• 제목/요약/키워드: iron mineralogy

검색결과 42건 처리시간 0.02초

북극해 천해저 비구형 망가니즈단괴 내 광물종 분포 및 구조적 특성 규명을 위한 라만 분광분석 연구 (Raman Spectroscopic Study for Investigating the Spatial Distribution and Structural Characteristics of Mn-bearing Minerals in Non-spherical Ferromanganese Nodule from the Shallow Arctic Ocean)

  • 이상미;구효진;조현구;김효임
    • 광물과 암석
    • /
    • 제35권4호
    • /
    • pp.409-421
    • /
    • 2022
  • 자연계에서 산출되는 망가니즈단괴 내 광물종 및 원소의 공간적 분포를 규명하는 것은 단괴의 형성 과정 중 변화하는 생성 환경 및 지화학적 조건에 대한 이해를 가능하게 한다. 최근의 라만 분광분석을 이용한 연구에서 구형으로 성장한 단괴의 성장에 따른 산화망가니즈 광물종의 변화에 대해 연구한 바 있으나, 상대적으로 천해에서 획득되는 비구형 단괴 내 광물종의 분포는 자세히 연구되지 않았다. 이에 본 연구에서는, 동시베리아해 천해(수심 약 73 m)에서 산출되는 판상의 비구형 망가니즈단괴 내 서로 다른 성장 방향에서 획득된 라만 분광분석 결과를 바탕으로 단괴 내 광물종 및 해당 광물의 구조적 특성에 대하여 면밀히 연구하였다. 또한 에너지분산형 X-선 분광분석(energy dispersive spectroscopy, EDS)을 통하여 단괴 내부 구조 및 부수광물의 존재에 대하여도 관찰을 수행하였다. 그 결과, 본 연구에서 사용한 비구형 단괴의 내부는 중심으로 부터 외곽 방향으로 크게 핵, 철 기질부, Mn-Fe 층으로 구분되었다. Mn-Fe 층 내 서로 다른 성장 방향에서 획득된 라만 분광분석 결과는 모든 방향에 대하여, 단괴 중심부로부터 외곽부로 신호 획득위치가 옮겨감에 따라 산화망가니즈 광물의 경우 터널형 광물의 비율이 감소하는 경향성을 관찰할 수 있었다. 이 때, 단괴 내 성장 방향에 따라 구성 광물의 상대적 비율 및 구조적 특성이 크게 다르다는 것이 확인되었다. 총 3가지의 실험 방향 중, 한 방향에서 획득된 라만 분광분석 결과는, 철 수산화물의 비율이 낮고, 버네사이트나 토도로카이트와 같은 산화망가니즈 광물들의 결정도가 상당히 높다는 것을 보여주었다. 반면, 나머지 두 방향에서 획득된 신호를 분석한 결과, 산화망가니즈 광물들의 결정도가 매우 낮으며 비정질 내지는 결정도가 낮은 철 수산화물들의 비율이 높다는 것이 확인되었다. 이러한 결과는 비구형 단괴가 속성 과정으로 형성되는 동안 단일 단괴 내에서도 지화학적 조건에 차이가 있었다는 것을 지시한다. 더하여, 부수광물로서 암염이 일부 층에서 관찰되는 것을 확인할 수 있었다. 이는 단괴 내 존재하던 해수의 증발로 인해 암염 결정이 형성되었음을 지시한다. 이처럼 본 연구에서는 라만 분광분석을 통해 비구형 단괴 내 광물종의 분포 및 구조적 특성에 대해 제시하였고 향후 본 연구 방법은 다양한 단괴 연구에 적용되어 지구물질의 지질학적 형성 과정에 대한 보다 세밀한 이해를 가능하게 할 것으로 기대된다.

의성(義城)지역 전흥(田興) 및 옥산(玉山) 열수(熱水) 연(鉛)-아연(亞鉛)-동(銅) 광상(鑛床)에 관한 광물학적(鑛物學的)·지화학적(地化學的) 연구(硏究) (Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area)

  • 최선규;이재호;윤성택;소칠섭
    • 자원환경지질
    • /
    • 제25권4호
    • /
    • pp.417-433
    • /
    • 1992
  • 경북(慶北) 의성(義城)지역 연(鉛)-아연(亞鉛)-동광상(銅鑛床)(전흥(田興), 옥산(玉山) 광산)은 경상분지(慶尙盆地) 백악기(白堊紀) 퇴적암류내의 구조면을 충진한 열수(熱水) 석영-방해석 맥상(脈狀) 광체(鑛體)로 구성된다. 광화(鑛化)작용은 구조적으로 석영-유화물(硫化物)-유염(硫鹽)광물-적철석 정출기, barren 석영-형석 정출기, barren 방해석 정출기 등 3회로 구분된다. 광화(鑛化) I기(期)의 광석(鑛石)광물은 황철석, 황동석, 섬아연석, 방연석 및 Pb-Ag-Bi-Sb계 유염광물(硫鹽鑛物) 등으로서 두 광산의 광물조성은 유사하지만, 유비철석, 자류철석, 테트라헤드라이트, 철을 다량 함유하는(약 21 mole% FeS)섬아연석 등은 옥산(玉山)광산에서만이 산출된다. 변질대 집운모(緝雲母)에 의한 K-Ar 연령은 약 62 Ma로서, 광화(鑛化)작용이 인근 금성산(金城山) 칼데라 화산암류와 도처에 분포하는 산성암맥의 분출 및 관입 활동과 관련된 후기 백악기(白堊紀) 화성활동의 산물이었음을 지시한다. 광화(鑛化) I기(期) 광물정출은 0.7~6.3wt.% NaCl 상당염농도(相當閻濃度)를 갖는 광화유체(鑛化流體)로부터 > $380^{\circ}{\sim}240^{\circ}C$의 온도범위에서 진행되었고, 특히 동(銅)광물은 대부분 > $300^{\circ}C$의 고온에서 침전하였다. 유체포유물(流體包有物) 연구에 의하면, I기 연(鉛)-아연(亞鉛)-동(銅)광물의 침전은 비등(沸騰) 냉각(冷却) 희석(稀釋)등 비교적 복잡한 양식의 광액(鑛液)진화에 기인하였지만, 전흥(田興)광산의 경우 차가운 천수(天水)의 유입(流入)에 따른 냉각(冷却) 및 희석(稀釋)이 우세하였던 반면, 옥산(玉山)광산의 경우는 비등(沸騰)이 우세하게 진행되었다. 광화유체(鑛化流體)의 비등(沸騰)에 근거한 광화(鑛化)작용시의 압력은 초기 약 210 bar에서 후기 약 80 bar에 이르며, 이는 열수계(熱水系)가 정암압(靜岩壓)이 우세한 환경에서 정수압(靜水壓)이 우세한 환경으로 전이되었음을 지시하여 주고 따라서 광화심도(鑛化深度)는 약 900m로 추정된다. 유화물(硫化物)의 유황동위원소(硫黃同位元素) 조성 ($2.9{\sim}9.6$‰)에 근거한 초기 열수유체(熱水流體)의 전(全)유황동위원소값(${\delta}^{34}S_{{\Sigma}S}$)은 약 8.6‰이며, 이는 심부(深部) 화성원(火成源)의 유황이 퇴적암류내 sulfate (?)와 다소 혼합되었음을 나타내는 것으로 사료된다. 한편, 수속 및 산소동위원소 조성은 열수계(熱水系)내의 물이 대부분 천수(天水)로부터 기원하였음을 지시한다. 광물열역학(鑛物熱力學)적 고찰 결과, I기 광화유체(鑛化流體)의 온도 및 유황분압(硫黃分壓)의 변화는 두 광산에서 다소 상이하였다. 즉, 전흥(田興)광산의 경우 온도 감소와 더불어 유황분압(硫黃盆壓)은 황철석-적철석-자철석의 공존선을 따라 지속적으로 감소하였으나, 옥산(玉山)광산의 경우는 초기 황철석-자류철석 공존환경으로부터 후기 황철석-적철석-자철석의 공존환경으로 전이하였다. 한편, 차고 산화(酸化) 상태인 천수(天水)가 광액(鑛液)중에 혼입(混入)됨에 따라 광액의 산소분압(酸素盆壓)은 점차 증가하였다. 동(銅)광물의 침전은 주로 광화유체(鑛化流體)의 냉각에 따른 동염화복합체(銅鹽化複合體)($CuCl^{\circ}$)의 용해도 감소에 기인하였으리라 고려된다. 이러한 냉각 작용은 전흥(田興)광산의 경우 주로 천수혼입(天水混入)에 따른 결과였지만, 옥산(玉山)광산의 경우는 주로 광화유체(鑛化流體)의 비등(沸騰)에 기인하였다.

  • PDF