• Title/Summary/Keyword: iron and manganese

Search Result 360, Processing Time 0.025 seconds

Iron and manganese removal in direct anoxic nanofiltration for indirect potable reuse

  • Jin, Yongxun;Choi, Yeseul;Song, Kyung Guen;Kim, Soyoun;Park, Chanhyuk
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.299-305
    • /
    • 2019
  • Managed aquifer recharge (MAR) systems are gaining interest as an alternative to conventional water resources. However, when the water recovered in MAR systems, dissolved iron and manganese species may easily oxidize and they cause well screen clogging or require abandonment of extraction wells. In this study, both oxic and anoxic conditions were analyzed to verify the feasibility of the membrane filtration performance under various solution chemistries. The fouling mechanisms of the metal ions under anoxic conditions were also investigated by employing synthetic wastewater. The fouled membranes were then further analyzed to verify the major causes of inorganic fouling through SEM and XPS. The newly suggested anoxic process refining existing membrane process is expected to provide more precious information about nanofiltration (NF) membrane fouling, especially for demonstrating the potential advantages to chemical-free drinking water production for indirect potable reuse.

Dechlorination of the Fungicide Chlorothalonil by Zerovalent Iron and Manganese Oxides (Zerovalent Iron 및 Manganese Oxide에 의한 살균제 Chlorothalonil의 탈염소화)

  • Yun, Jong-Kuk;Kim, Tae-Hwa;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • This study is conducted to determine the potential of zerovalent iron (ZVI), pyrolusite and birnessite to remediate water contaminated with chlorothalonil. The degradation rate of chlorothalonil by treatment of ZVI, pyrolusite and birnessite was much higher in low condition of pH. Mixing an aqueous solution of chlorothalonil with 1.0% (w/v) ZVI, pyrolusite and birnessite resulted in 4.7, 13.46 and 21.38 hours degradation half-life of chlorothalonil, respectively. Dechlorination number of chlorothalonil by treaonent of ZVI, pyrolusite and birnessite exhibited 2.85, 1.12 and 1.09, respectively. Degradation products of chlorothalonil by teartment of pyrolusite and birnessite were confirmed as trichloro-1,3-dicyanobenzene and dichloro-1,3-dicyanobenzene which were dechlorinated one and two chlorine atoms from parent chlorothalonil by GC-mass. Degradation products of chlorothalonil by ZVI were identified not only as those by pyrolusite and birnessite but as further reduced chloro-1,3-dicyanobenzene and chlorocyanobenzene.

Concentrations and Distributions of 5 Metals in Groundwater Based on Geological Features in South Korea

  • Jeon, Sang-Ho;Park, Sunhwa;Song, Da-Hee;Hwang, Jong-yeon;Kim, Moon-su;Jo, Hun-Je;Kim, Deok-hyun;Lee, Gyeong-Mi;Kim, Ki-In;Kim, Hye-Jin;Kim, Tae-Seung;Chung, Hyen-Mi;Kim, Hyun-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.357-368
    • /
    • 2017
  • To establish new metal groundwater standard, 5 metals such as aluminum, chromium, iron, manganese, and selenium were evaluated by Chemical Ranking Of groundWater pollutaNts (CROWN) including possibility of exposure, toxicity, interest factor, connection standard for other media, and data reliability. 430 groundwater samples in 2013 and 2014 were collected semiannually from 110 groundwater wells and they were analyzed for selenium, manganese, iron, chromium, and aluminum. For this study, 430 groundwater samples were categorized into 3 geological distribution features, such as igneous, metamorphic, and sedimentary rock region and geological background levels were divided by pre-selection methods. For the results, the average concentrations of aluminum, chromium, iron, manganese, and selenium in 430 groundwater samples were $0.0008mg\;L^{-1}$, $0.0001mg\;L^{-1}$, $0.174mg\;L^{-1}$, $0.083mg\;L^{-1}$, and $0.0004mg\;L^{-1}$, respectively. In addition, among various geologies, average concentration of selenium was the highest in igneous rock region, average concentrations of chromium, manganese and aluminum were the greatest in sedimentary rock region, and average concentration of iron was the most high in metamorphic rock region. As a result of the geological background concentration with pre-selection method, background concentrations of selenium and aluminum in groundwater samples were the highest from sedimentary rock as $0.0010mg\;L^{-1}$ and $0.0029mg\;L^{-1}$ and background concentrations of manganese and iron in groundwater samples were the greatest from metamorphic rock as $0.460mg\;L^{-1}$ and $1.574mg\;L^{-1}$, and no chromium background concentration in groundwater samples was found from all geology.

Loss of Hfe Function Reverses Impaired Recognition Memory Caused by Olfactory Manganese Exposure in Mice

  • Ye, Qi;Kim, Jonghan
    • Toxicological Research
    • /
    • v.31 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • Excessive manganese (Mn) in the brain promotes a variety of abnormal behaviors, including memory deficits, decreased motor skills and psychotic behavior resembling Parkinson's disease. Hereditary hemochromatosis (HH) is a prevalent genetic iron overload disorder worldwide. Dysfunction in HFE gene is the major cause of HH. Our previous study has demonstrated that olfactory Mn uptake is altered by HFE deficiency, suggesting that loss of HFE function could alter manganese-associated neurotoxicity. To test this hypothesis, Hfe-knockout ($Hfe^{-/-}$) and wild-type ($Hfe^{+/+}$) mice were intranasally-instilled with manganese chloride ($MnCl_2$ 5 mg/kg) or water daily for 3 weeks and examined for memory function. Olfactory Mn diminished both short-term recognition and spatial memory in $Hfe^{+/+}$ mice, as examined by novel object recognition task and Barnes maze test, respectively. Interestingly, $Hfe^{-/-}$ mice did not show impaired recognition memory caused by Mn exposure, suggesting a potential protective effect of Hfe deficiency against Mn-induced memory deficits. Since many of the neurotoxic effects of manganese are thought to result from increased oxidative stress, we quantified activities of anti-oxidant enzymes in the prefrontal cortex (PFC). Mn instillation decreased superoxide dismutase 1 (SOD1) activity in $Hfe^{+/+}$ mice, but not in $Hfe^{-/-}$ mice. In addition, Hfe deficiency up-regulated SOD1 and glutathione peroxidase activities. These results suggest a beneficial role of Hfe deficiency in attenuating Mn-induced oxidative stress in the PFC. Furthermore, Mn exposure reduced nicotinic acetylcholine receptor levels in the PFC, indicating that blunted acetylcholine signaling could contribute to impaired memory associated with intranasal manganese. Together, our model suggests that disrupted cholinergic system in the brain is involved in airborne Mn-induced memory deficits and loss of HFE function could in part prevent memory loss via a potential up-regulation of anti-oxidant enzymes in the PFC.

The Changing Patterns of Demand-Supply and Role of Mineral Resources in Economic Growth during Industrialization of the Republic of Korea (한국공업화과정(韓國工業化過程)에서의 광물자원(鑛物資源)의 수급구조변화(需給構造變化)와 경제성장(經濟成長)에 있어서의 역할(役割))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.18 no.1
    • /
    • pp.65-92
    • /
    • 1985
  • A total of 12 mineral commodities significant in domestic output, economy and/or strategy of the Republic of Korea are chosen to examine the structural changes in production and demand-supply of these minerals during the last two decades of her industrialization. These include iron and manganese ores as the raw materials for iron and steel making, copper, zinc and tungsten ores among other non-ferrous metallic minerals, limestone (cement), kaolin, talc, pyrophyllite and graphite among other non-metallic minerals, and anthracite coal as the only domestic source of fossil energy. These are reviewed historically in time-series based on the statistical data which are tabulated and graphed in terms of domestic output, export, import, apparent demand-supply, its increasing rate, and self-sufficiency rate of each commodity. The increasing rates of demand-supply (IRDS) of some more important commodities are compared with those of Gross Domestic Production (GDP) and Economic Growth Rate (EGR) to evaluate how the IRDS contributed to the GDP and EGR. The major results revealed are as follows: Among the 12 commodities, the domestic output of 8 commodities appeared to have grown with steady upward trends: they are ores of lead, zinc and tungsten, limestone (cement), kaolin, talc, pyrophyllite and anthracite coal. Two commodities, ores of iron and copper, continued with unchanging or slightly declining trends and varied fluctuations, in spite of their cardinal importance to the heavy industry and strategy of Korea. The remaining two, graphite and manganese ore, have gradualy declined in domestic output in which the former has still enough resource potential but the latter has not and virtually ceased its domestic output. Trade patterns for mineral commodities in the Republic of Korea during the last two decades have changed greatly, being marked by a shift from mineral-exporting to mineral importing, mainly because of increasing consumption of mineral raw materials for industrialization rather than beceuse of decreasing output of domestic mineral commodities in quantity. In terms of trade patterns, the 12 commodities concerned in this study can be classified into the following four groups. The 1st group - ores of lead and tungsten have only been exported without imports. The 2nd group - amorphous graphite, and pyrophyllite have mainly been exported but partly been imported. The 3rd group - kaolin, talc and crystalline graphite have equally been exported and imported, but quantity of imports have rapidly been increased with time. The 4th group - ores of iron, manganese and zinc have shifted from exports to imports during the industrialization, particularly owing to the initiation of iron and steel making by the Pohang Iron and Steel Company in the middle 1970' s and the new establishment of the Onsan Zinc Refinery in the late 1970' s. All of the 12 commodities under considerations were far above 100% in self-sufficiency rate before or in the early 1960' s. Recently, however, most of them have been declined to below 100% except for those of limestone (cement) and pyrophyllite. It is particularly serious to identify that the self-sufficiency rates of the three important metallic minerals, iron, copper and manganese ores in 1982 appeared to be 5.1%, 0.5%, and 0.01%, respectively. The average self-sufficiency rate of the total domestic minerals produced in 1982 was 14.4% (in value) for that year. Mining industry appeared to be extremely high in its intermediate demand rate whereas its intermediate input rate to be quite low indicating that mineral raw materials have been exerted strong forward linkage effects upon the other industries rather than backward linkage effects. In comparing the curves of increasing rates of demand-supply of several major minerals - iron ore, manganese ore, copper ore, limestone (cement), kaolin, and anthracite coal - with those of Gross Domestic Production and Economic Growth Rate drawn on every graph, it is clearly shown that the curves of increasing rates of demand-supply comprise around 6 to 7 periods of cycles which roughly harmonious with those of the curves of GDP and EGR, except for the curve of anthracite coal of which the configuration seems to have resulted from the (artificial) government's mineral policy rather than from economic free market mechanism. The harmonic feature of these curves well suggests that the increasing rates of demand-supply of major minerals have been significantly contributed to the GDP and EGR. In addition, the wider amplitudes of the iron, manganese and copper curves than those of the limestone (cement) and kaolin curves indicate that the contribution of the former, metallic commodities, has been greater than that of the latter, non-metallic commodities.

  • PDF

Influence of Maternal Diet on Mineral and Trace Element Content of Human Milk and Relationships Between Level of These Milk Constituents (수유부의 식이섭취가 모유의 무기질 및 미량원소 함량에 미치는 영향과 모유의 각 무기질 농도 사이의 상관성 연구)

  • 안홍석
    • Journal of Nutrition and Health
    • /
    • v.26 no.6
    • /
    • pp.772-782
    • /
    • 1993
  • This study was conducted to assess the relationships between maternal dietary intakes and milk contents of minerals and trace elements, and the correlation among levels of these milk constituents. Maternal dietary intakes were measured and milk samples were collected at 2∼5 days, 2, 4, 6 and 12 weeks postpartum from 29 lactating women. The results obtained are sumarized as follows: 1) The overall mean nutrient intakes of lactating women in this study were below the recommended allowances and there were extensive individual variations between subjects. 2) Concentrations of minerals and trace elements in matured human milk showed the same range reported from different countries with the exception of calcium, magnesium, manganese and molybdenum which were relatively high. 3) There were no significant relationships between maternal dietary intakes of minerals and the corresponding mineral levels of human milk. In addition, no significant correlations were found between maternal vitamin C intake and the iron contents of milk. These were significant positive correlations between maternal calcium intake and the magnesium level of milk ; between maternal protein intake and the contents of zinc and copper in human milk. Maternal energy intake was negatively correlated with milk sodium level. 4) Pearson correlation coefficient showed positive significant relationships between levels of 17 pairs of various mineral and trace elements : sodium and potassium, iron ; potassium and calcium, phosphors, magnesium, iron, copper, manganese ; calcium and magnesium, iron manganese, molybdenm, nickel ; magnesium and iron, molybdenum ; iron and copper ; nickel and manganese.

  • PDF

Generation Rate and Content Variation of Manganese in Stainless Steel Welding (스테인레스 강 용접중 발생하는 망간의 발생량 및 함량변화에 관한 연구)

  • Yoon, Chung Sik;Kim, Jeong Han
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.254-263
    • /
    • 2006
  • Manganese has a role as both toxic and essential in humans. Manganese is also an essential component in the welding because it increases the hardness and strength, prevents steel from cracking of welding part and acts as a deoxidizing agent to form a stable weld. In this study, manganese generation rate and its content was determined in flux cored arc welding on stainless steel. Domestic two products and foreign four products of flux cored wires were tested in the well designed fume generation chamber as a function of input power. Welding fume was measured by gravimetric method and metal manganese was determined by inductively coupled plasma-atomic emission spectrophotometer. The outer shell of the flux cored wire tube and inner flux were analyzed by scanning electron microscopy to determine their metal compositions. Manganese generation rate($FGR_{mn}$) was increased as the input power increased. It was 16.3 mg/min at the low input power, 38.1 mg/min at the optimal input power, and up to 55.4 mg/min at the high input power. This means that $FGR_{mn}$ is increased at the work place if welder raise the current and/or voltage for the high productivity. The slope coefficient of $FGR_{mn}$ was smaller than that of the generation rate of total fume(FGR). Also, the correlation coefficient of $FGR_{mn}$ was 0.65 whereas that of FGR is 0.91. $FGR_{mn}$ was equal or higher in the domestic products than that of the foreign products although FGR was similar. From the electron microscopic analytical data, we concluded that outer shell of the wire was composed mainly of iron, chromium, nickel and less than 1.2 % of manganese. There are many metal ingredients such as iron, silica, manganese, zirconium, titanium, nickel, potassium, and aluminum in the inner flux but they were not homogeneous. It was found that both $FGR_{mn}$ and content of manganese was higher and more varied in domestic flux cored wires than those of foreign products. To reduce worker exposure to fumes and hazardous component at the source, further research is needed to develop new welding filler materials that improve the quality of flux cored wire in respect to these points. Welder should keep in mind that the FGR, $FGR_{mn}$ and probably the generation rate of other hazardous metals were increased as the input power increase for the high productivity.

Genesis of the Lead-Zinc-Silver and Iron Deposits of the Janggun Mine, as Related to Their Structural Features Structural Control and Wall Rock Alteration of Ore-Formation (장군광산(將軍鑛山)의 연(鉛)·아연(亞鉛)·은(銀) 및 철(鐵) 광상(鑛床)의 성인(成因)과 지질구조(地質構造)와의 관계(關係) - 광상(鑛床) 생성(生成)의 지질구조(地質構造) 규제(規制)와 모암(母岩)의 변질(變質) -)

  • Lee, Hyun Koo;Ko, Suck Jin;Naoya, Imai
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.161-181
    • /
    • 1990
  • The lead-zinc-silver-iron deposits from the Janggun mine are of hydrothermal-metasomatic origin, characterized by the marked hydrothermal alteration of the wallrocks, such as hydrothermal manganese enrichment of carbonate rocks, silicification, chloritization, sericitization, montmorillonitization and argillic alteration. The ore deposits have been emplaced within the Janggun Limestone of Cambro-Ordovician age at the immediate contacts with apophyses injected from the Chunyang Granite plutons of Late Jurrasic age. They have been structurally controlled by fractures in the carbonate rocks and the irregular intrusive contacts of granitic rocks, and are closely associated with hypogene manganese carbonate deposits. In the mine nine seperate orebodies are being mined. On the basis of the petrological study, hydrothermal alteration zone of this mine may be divided into the following four zones from wallrock to orebody. (I) Primary calcite and dolomite zone${\rightarrow}$(II) dolomitic limestone zone${\rightarrow}$(III) dolomitic zone${\rightarrow}$(IV) rhodochrosite zone${\rightarrow}$ orebody. There was not recongnized Mn and Fe elements in the primary calcite and dolomite zone. But, in the dolomitic limestone and dolomite zone, calcite and dolomite were subjected to weak hydrothermal manganese enrichment and the grade of the manganese enrichment increase oreward. By means of electron probe microanalysis, it was found that manganoan dolomite occured between primary dolomite grains, cross the cleavage of the primary dolomite and around the dolomite grains. Above these result supports that the Janggun manganese carbonate deposits are of hydrothermal metasomatic origin.

  • PDF

Respiratory symptoms of workers exposed to the fume containing manganese (망간이 함유된 흄에 노출되는 근로자의 호흡기증상)

  • Yu, Sun-Hee;Kim, Doo-Hie;Lim, Hyun-Sul;Kim, Ji-Yong;Choi, Byung-Soon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.4 s.59
    • /
    • pp.752-763
    • /
    • 1997
  • To evaluate the effect of manganese on the respiratory system, we investigated the respiratory symptoms of 63 male workers exposed to, fume containing manganese (Mn), iron (Fe) and silica (Si), and compared them with those of 66 male workers not exposed to the fume in a manganese alloy smelting factory. The prevalence ratios of the seven respiratory symptoms were not different between two groups. The presence of any respiratory symptom was not related with the age, duration of employment, smoking status of workers, and exposure to fume. In furnace workers, it was not related with the airborne Mn, Fe, and Si concentration in the total or respirable fume. Airborne Mn concentrations of all 4 furnaces in the respirable fume were below $1mg/m^3$. There were two suspicious cases of pneumoconiosis among furnace workers and one definite case(1/2) among casting workers who were not exposed to fume. The above results suggest that the exposure to the low airborne Mn concentration is not related with respiratory symptoms and pneumoconiosis. However, it is necessary to study the respiratory effects of Mn using the symptom questionnaire with consideration of the severity and persistence, of symptoms and the time interval from exposure.

  • PDF

Effect of Lime Application and Fertilization Level on Prevention of Grey Tobacco Leaves (토양산도 및 시비량 조절에 의한 연초의 Grey엽 발생방지 효과)

  • Lee, Chul-Hwan;Jin, Jeong-Eui;Lee, Dong-Hoon
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.2
    • /
    • pp.128-133
    • /
    • 1994
  • This study was carried out to get agronomic information about the tobacco culture in paddy soil where incidence of grey tobacco leaves used to appearly uptake of iron, manganese and chlorine due to soil acidity and high water level. Application of lime to paddy soil(pH5.4-5.6) reduced content of iron, manganese known as proceeding materials giving rise to variegated grey tobacco after curing, compared with non-treatment. Grey leaves were found mainly at lower and middle stalk positions, and incidence of grey tobacco was lowered by application of lime in the well drained field but was not affected by level of fertilizer application. Amendment of soil acidity by lime tended to decrease chlorine and manganese content in leaves. Nicotine and mangenese content of leaves were lowered by reduction of one-quarter fertilizer level. In case of lime treatment, increase of yield reached to 4-6% comparing with those of non-treatment but price per kg was not affected. Reduction of N fertilizer level to three-quarters had the equal yield but high quality of leaf comparing with standard fertilization in paddy field.

  • PDF