• Title/Summary/Keyword: iron and manganese

Search Result 360, Processing Time 0.022 seconds

Study on Nutritive Value and In Situ Ruminal Degradability of Whole Crop Rice Silage Prepared Using Chucheongbyeo (추청벼 총체 사일리지의 사료가치 및 부위별 In situ 분해율에 관한 연구)

  • Ki, Kwang Seok;Park, Su Bum;Lim, Dong Hyun;Park, Seong Min;Kim, Sang Bum;Kwon, Eung Gi;Lee, Se Young;Choi, Ki Chon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.4
    • /
    • pp.240-244
    • /
    • 2013
  • We investigated the nutritive value and ruminal in situ dry matter degradability of whole crop rice silage prepared using Chucheongbyeo (WCRS) as a roughage source for ruminants. The crude protein (7.54%), acid detergent fiber (29.63%), neutral detergent fiber (62.98%), and total digestible nutrient (TDN) (57.88%) found higher in WCRS than those of rice straw. Manganese content in the WCRS was the highest, followed by carbon, iron, zinc, and copper, but magnesium content was the lowest. Glutamic acid content in WCRS was the highest, followed by leucine, asparagine, alanine, valine, arginine, and methionine content was the lowest. We examined ruminal in situ digestibility from total whole crop rice (TWCR), rice husks containing rice (RHR), whole crop rice except RHR (WER), and husked grain (HG) for 3, 6, 12, 24, and 48 hours. Ruminal in situ digestibility in the HG was the highest, followed by RHR, TWCR, and WER. Therefore, we suggest that ruminal in situ degradability was influenced by parts of whole crop rice, and the content of manganese and glutamic acid were the highest in WCRS.

Synthesis of Prussian Blue Analogue and Magnetic and Adsorption Characteristics of MnFe2O4 (프러시안 블루 유사체의 합성 및 MnFe2O4의 자성과 흡착 특성)

  • Lee, Hye-In;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The Prussian Blue Analogue(PBA) has three dimensional structure and the metal - organic framework material, and it has a variety configurations depending on the type of organic ligands. PBA has been receving an attention in the fields of biosensors, optical, catalytic, and hydrogen storage device. Also, it is an environmental friendly substance with a chemical stability. In addition, PBA is widely used in the filed of adsorption art since we can adjust the size of the fine pores. In this study, we synthesized $Mn_3[Fe(CN)_6]_2$, an organometallic framework chains by using a hydrothermal synthesis method. We used $K_4[Fe(CN)_6]$ and $MnCl_2$ as precursors. We also produced a manganese iron oxide, by baking the synthesized material. The effect of the size and shape of the particles was examined by controling pH of the precursor solution, the molar concentration of the precursor, and reaction time as the experimental variables. Synthesized absorbent was analyzed by XRD, SEM, FT-IR, UV-Vis, and TG / DTA to evaluate the adsorption properties of several dyes.

Geochemistry and Mineralogical Characteristics of Precipitate formed at Some Mineral Water Springs in Gyeongbuk Province, Korea (경북지역 주요 약수의 지화학과 침전물의 광물학적 특성)

  • Choo, Chang-Oh;Lee, Jin-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2009
  • Mineralogical characteristics of secondary precipitate formed at some mineral water springs in Gyeongbuk Province, Korea were studied in relation to water chemistry. The chemical water types of mineral water springs are mostly classified as $Ca-HCO_3$ type, but $Na(Ca)-HCO_3$ and $Ca-SO_4$ types are also recognized. Ca, Fe, and $HCO_3\;^-$ are the most abundant components in the water. The pH values of most springs lie in 5.76${\sim}$6.81, except Hwangsu spring having pH 2.8. Saturation indices show that all springs are supersaturated with respect to iron minerals and oxyhydroxides such as hematite and goethite. The result of particle size analysis shows that the precipitate is composed of the composite with various sizes, indicating the presence of iron minerals susceptible to a phase transition at varying water chemistry or the mixtures consisting of various mineral species. The particle size of the reddish precipitate is larger than that of the yellow brown precipitate. Based on XRD and SEM analyses, the precipitate is mostly composed of ferrihydrite (two-line type), goethite, schwertmannite, and calcite, with lesser silicates and manganese minerals. The most abundant mineral fanned at springs is ferrihydrite whose crystals are $0.1{\sim}2\;{\mu}m$ with an average of $0.5\;{\mu}m$ in size, characterized by a spherical form. It should be interestingly noted that schwertmannite forms at Hwangsu spring whose pH is very low. At Shinchon spring, Gallionella ferruginea, one of the iron bacteria, is commonly found as an indicator of the important microbial activity ascribed to the formation of iron minerals because very fine iron oxides with a spherical form are closely distributed on surfaces of the bacteria. A genetic relationship between the water chemistry and the formation of the secondary precipitate from mineral water springs was discussed.

Material Characteristics and Deterioration Assessment for Multi-storied Round shape Stone Pagoda of Unjusa Temple, Hwasun, Korea (화순 운주사 원형다층석탑의 재질특성과 훼손도 평가)

  • Park, Sung Mi;Lee, Myeong Seong;Kim, Jae Hwan;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.86-101
    • /
    • 2012
  • The constituting rocks of Multi-storied Round shape stone Pagoda of Unjusa Temple are lithic tuff and rhyolite tuff breaccia which show green or grey and also rock fragment with poor roundness are present in the structure. lithic tuff is composed of feldspar and quartz which are glassy texture and cryptocrystalline and also micro crystalline are scattered. phenocryst quartz and feldspar in the substrate composed of feldspar and opaque minerals are found in rhyolite tuff breaccia. dust, exfoliation, cavity, fracture and crack are observed in all the stone of the pagoda and the result of Infrared Thermography shows partial inter cavities have developed severely which may cause further exfoliation. In addition, a great deal of various grey, green, and yellow brown lichen as well as bryophyte are present at the upper part of eastern and western roof stone located above the third floor. Discolors remarkably shown at stereobate and roof stone are identified as inorganic pollutants such as manganese oxide, iron oxide and iron hydroxide. The stone of the pagoda of the Chemical Index of Alteration (CIA) and the Weathering Potential Index (WPI) are 55.69 and 1.12 respectively and this corresponds to a highly weathered stage. The measured values, average ultrasonic velocity 2,892m/s, coefficient of weathering 0.4k and compressive strength $1,096kg/cm^3$, suggest that the rock strength and durability are weakened.

Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng

  • Zhou, Ying;Yang, Zhenming;Gao, Lingling;Liu, Wen;Liu, Rongkun;Zhao, Junting;You, Jiangfeng
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.307-315
    • /
    • 2017
  • Background: Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). Methods: To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. Results: Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of $H_2O_2$ and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of $\text\tiny L$-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione-S-transferase activity remained constant. Conclusion: Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound oxidation.

Assessment of The Above-Ground Carbon Stock and Soil Physico-Chemical Properties of an Arboretum within The University of Port Harcourt, Nigeria

  • Akhabue, Enimhien Faith;Chima, Uzoma Darlington;Eguakun, Funmilayo Sarah
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.3
    • /
    • pp.193-205
    • /
    • 2021
  • The importance of forests and trees in climate change mitigation and soil nutrient cycling cannot be overemphasized. This study assessed the above-ground carbon stock of two exotic and two indigenous tree species - Gmelina arborea, Tectona grandis, Khaya grandifoliola and Nauclea diderrichii and their litter impact on soil nutrient content of an arboretum within the University of Port Harcourt, Nigeria. Data were collected from equal sample plots from the four species' compartments. Tree growth variables including total height, diameter at breast height, crown height, crown diameter and merchantable height were measured for the estimation of above-ground carbon stock. Soil samples were collected from a depth of 0-30 cm from each compartment and analyzed for particle size distribution, organic carbon, total nitrogen, available phosphorus, exchangeable bases, exchangeable acidity, cation exchange capacity, base saturation, pH, Manganese, Iron, Copper and Zinc. Analysis of Variance (ANOVA) was used to test for significant difference (p<0.05) in the carbon contents of the four species and the soil nutrient contents of the different species' compartments. Pearson correlation was used to assess the relationships between the carbon contents, growth parameters and soil parameters. The highest and lowest carbon stock per hectare was observed for G. arborea (151.52 t.ha-1) and K. grandifoliola (45.45 t.ha-1) respectively. Cation exchange capacity and base saturation were highest and lowest for soil under G. arborea and K. grandifoliola respectively. The pH was highest and lowest for soil under G. arborea and T. grandis respectively. Carbon stock correlated positively with dbh, crown diameter, merchantable height and Zn and negatively with base saturation. The study revealed that G. arborea and N. diderrichii can effectively be used for reforestation and afforestation programmes aimed at climate change mitigation across Nigeria. Therefore, policies to encourage and enhance their planting should be encouraged.

Magnetite and Scheelite-Bearing Skarns in Ulsan Mine, Korea (울산 광산의 철-텅그스텐 스카른화작용)

  • Choi, Seon-Gyu;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.41-54
    • /
    • 1993
  • The Ulsan Fe-W deposit, which can be classified as a calcareous skarn deposit, is represented by ore pipe consisting principally of magnetite and lesser amounts of scheelite with minor sulphides, sulphosaits, arsenides, sulpharsenides, etc. At Ulsan mine, metasomatic processes of skarn growth may be divided broadly into two stages based on the paragenetic sequence of calc-silicate minerals and their chemical composition; early and late skarn stages. Early stage has started with the formation of highly calcic assemblages of wollastonite, diopsidic clinopyroxene and nearly pure grossular, which are followed by the formation of clinopyroxenes with salite to ferrosalite composition and grandite garnets with intermediate composition. Based on these calc-silicate assemblages, the temperatures of early skarn formations have been in the ranges of $550^{\circ}$ to $450^{\circ}$. The calc-silicate assemblages formed during the earlier half period of late skarn stage show the enrichment of notable iron and slight manganese, and the depletion of magnesium; clinopyroxenes are hedenbergitic, and grandite garnets are andraditic. The formation temperatures during this skarn stage are inferred to have been in the range of $430^{\circ}$ to $470^{\circ}C$ at low $X_{CO_2}$ by data from fluid inclusions of late andraditic garnets. The later half period of late skarn stage is characterized by the hydrous alteration of pre-existing minerals and the formation of hydrous silicates. The main iron-tungsten mineralization representing prominent deposition of magnetite immediately followed by minor scheelite impregnation has taken place at the middle of early skarn stage, while complex polymetallic mineralization has proceeded during and after the late skarn stage. Various metals and semimetals of Fe, Ni, Co, Cu, Zn, As, Mo, Ag, In, Sn, Sb, Te, Pb and Bi have been in various states such as native metal, sulphides, arsenides, sulphosaits, sulpharsenides and tellurides.

  • PDF

Nutritional characteristics of horsemeat in comparison with those of beef and pork

  • Lee, Chong-Eon;Seong, Pil-Nam;Oh, Woon-Young;Ko, Moon-Suck;Kim, Kyu-Il;Jeong, Jae-Hong
    • Nutrition Research and Practice
    • /
    • v.1 no.1
    • /
    • pp.70-73
    • /
    • 2007
  • This study was conducted to determine the nutritional characteristics of horsemeat and bone meal in comparison with those of beef and pork presented by Dietary Reference Intakes For Koreans. Longissimus muscle and large metacarpal bone samples were collected from 20 fattened Jeju horses. Muscle samples were subjected to proximate analysis, assays for fatty acid profile and minerals, and bone samples to mineral assays. Horsemeal had similar levels of protein (21.1 vs 21.0 or 21.1%) and lower levels of fat (6.0 vs 14.1 or 16.1%) compared with beef or pork, respectively. Horsemeat had much higher levels of palmitoleic (8.2 vs 4.4 or 3.3%) and $\alpha-linolenic$ (1.4 vs 0.1 or 0.6%) acids than beef or pork, respectively. Linoleic acid was much higher in horsemeat (11.1%) and pork (10.1%) than in beef (1.6%). PUFA:SFA and n-6:n-3 ratios in horsemeat were 0.29 and 10.2, respectively. There were no big differences in mineral contents between horsemeat, beef and pork. For daily recommended mineral intakes of male adults (Dietary Reference Intakes For Koreans), phosphorus, sodium, potassium, iron, zinc and copper can be provided up to 24, 2.5, 6.7, 21, 26 and 40%, respectively, by 100 g raw horsemeat, but calcium and manganese levels are negligible. Horse cannon bone had much higher mineral contents especially in calcium (10,193 mg/100 g), phosphorus (5,874 mg/100 g) and copper (0.79 mg/100 g). Thiamin, riboflavin, niacin and retinol contents were 0.20, 0.21, 1.65 mg/100 g and $30{\mu}g/100g$, respectively. But ascorbic acid and beta-carotene were not detected. Our data demonstrated that higher levels of palmitoleic and $\alpha-linolenic$ acid in horsemeat than in beef and pork may be beneficial for human health. Horsemeat and bone meal are a good source of some minerals and vitamins.

Geology and Mineralization of the Iscaycruz Pb-Zn-Cu Project, Central Peru (페루 중부 이스카이크루즈 연-아연-동 프로젝트의 지질 및 광화작용)

  • Heo, Chul-Ho;Nam, Hyeong-Tae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • The geology of the Iskaycruz project are mainly composed of sedimentary rocks within Cretaceous basin. The basal part is composed up of dark-gray shale, gray sandstone, and clastic rock of Oyon formation interbedded with coal measures. In the folded zone in the eastern part of the survey area, there is Chimu formation that has medium-grained massive and white quarztite. In terms of geological structure, the Iskaykruz region is located in the folded and overthrust zones of the central part of the Occidental Mountains. Ore body was formed by hydrothermal replacement process and consists of zinc, lead, silver, and copper. Stratabound-type deposits are hosted in limestone of Santa formation. It extends 12 kilometers discontinuously from northern Canaypata to southern Antapampa. Irregular iron oxide and sulfide minerals hosted in Santa and Parihuanca formations are observed. The mineralization observed on the surface consist of primary sulfides consisting of sphalerite with galena and chalcopyrite, and iron and manganese oxide produced from oxidation of primary sulfides. Skarn minerals are accompanied by tremolite, garnet, epidote and quartz.

Characterizing soils and the enduring nature of land uses around the Lake Chamo Basin in South-West Ethiopia

  • Zebire, Degife Asefa;Ayele, Tuma;Ayana, Mekonen
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.129-160
    • /
    • 2019
  • Background: Characterizing and describing soils and land use and make a suggestion for sustainable utilization of land resources in the Ethiopian Rift valley flat plain areas of Lake Chamo Sub-Basin (CSB) are essential. Objectives: To (1) characterize soils of experimental area according to World Reference Base Legend and assess the nature and extent of salinity problems; (2) characterize land use systems and their role in soil properties; and (3) identify best land use practices used for both environmental management and improve agricultural productivity. Methods: Twelve randomly collected soil samples were prepared from the above land uses into 120 composites and analyzed. Results: Organic carbon (OC) and total nitrogen (TN) were varied along different land uses and depleted from the surface soils. The soil units include Chernozems (41.67%), Kastanozems (25%), Solonchaks (16.67%), and Cambisols (16.67%). The identified land uses are annual crops (AA), perennial crops (PA), and natural forest (NF). Generally, organic carbon, total nitrogen, percentage base saturation (PBS), exchangeable (potassium, calcium, and magnesium), available phosphorus (P2O5), manganese, copper, and iron contents were decreased in cultivated soils. Soil salinity problem was observed in annuals. Annuals have less nutrient content compared to perennials in irrigated agriculture while it is greater in annuals under rainfed. Clay, total nitrogen, available phosphorus, and available potassium (K2O) contents were correlated positively and highly significantly with organic carbon and electrical conductivity. Conclusion: Management practices that improve soil quality should be integrated with leguminous crops when the land is used for annual crops production.