• Title/Summary/Keyword: ionization

Search Result 1,905, Processing Time 0.022 seconds

Dosimetric Effect on Selectable Optimization Parameters of Volumatric Modulated Arc Therapy (선택적 최적화 변수(Selectable Optimization Parameters)에 따른 부피적조절회전방사선치료(VMAT)의 선량학적 영향)

  • Jung, Jae-Yong;Shin, Yong-Joo;Sohn, Seung-Chang;Kim, Yeon-Rae;Min, Jung-Wan;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.15-25
    • /
    • 2012
  • The aim of this study is to evaluate plan quality and dose accuracy for Volumetric Modulated Arc Therapy (VMAT) on the TG-119 and is to investigate the effects on variation of the selectable optimization parameters of VMAT. VMAT treatment planning was implemented on a Varian iX linear accelerator with ARIA record and verify system (Varian Mecical System Palo Alto, CA) and Oncentra MasterPlan treatment planning system (Nucletron BV, Veenendaal, Netherlands). Plan quality and dosimetric accuracy were evaluated by effect of varying a number of arc, gantry spacing and delivery time for the test geometries provided in TG-119. Plan quality for the target and OAR was evaluated by the mean value and the standard deviation of the Dose Volume Histograms (DVHs). The ionization chamber and $Delta^{4PT}$ bi-planar diode array were used for the dose evaluation. For treatment planning evaluation, all structure sets closed to the goals in the case of single arc, except for the C-shape (hard), and all structure sets achieved the goals in the case of dual arc, except for C-shape (hard). For the variation of a number of arc, the simple structure such as a prostate did not have the difference between single arc and dual arc, whereas the complex structure such as a head and neck showed a superior result in the case of dual arc. The dose distribution with gantry spacing of $4^{\circ}$ was shown better plan quality than the gantry spacing of $6^{\circ}$, but was similar results compared with gantry spacing of $2^{\circ}$. For the verification of dose accuracy with single arc and dual arc, the mean value of a relative error between measured and calculated value were within 3% and 4% for point dose and confidence limit values, respectively. For the verification on dose accuracy with the gantry intervals of $2^{\circ}$, $4^{\circ}$ and $6^{\circ}$, the mean values of relative error were within 3% and 5% for point dose and confidence limit values, respectively. In the verification of dose distribution with $Delta^{4PT}$ bi-planar diode array, gamma passing rate was $98.72{\pm}1.52%$ and $98.3{\pm}1.5%$ for single arc and dual arc, respectively. The confidence limit values were within 4%. The smaller the gantry spacing, the more accuracy results were shown. In this study, we performed the VMAT QA based on TG-119 procedure, and demonstrated that all structure sets were satisfied with acceptance criteria. And also, the results for the selective optimization variables informed the importance of selection for the suitable variables according to the clinical cases.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Development and Validation of the Analytical Method for Oxytetracycline in Agricultural Products using QuEChERS and LC-MS/MS (QuEChERS법 및 LC-MS/MS를 이용한 농산물 중 Oxytetracycline의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Cho, Myong-Shik;Jung, ong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.227-234
    • /
    • 2019
  • An analytical method was developed for the determination of oxytetracycline in agricultural products using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method by liquid chromatography-tandem mass spectrometry (LC-MS/MS). After the samples were extracted with methanol, the extracts were adjusted to pH 4 by formic acid and sodium chloride was added to remove water. Dispersive solid phase extraction (d-SPE) cleanup was carried out using $MgSO_4$ (anhydrous magnesium sulfate), PSA (primary secondary amine), $C_{18}$ (octadecyl) and GCB (graphitized carbon black). The analytes were quantified and confirmed with LC-MS/MS using ESI (electrospray ionization) in positive ion MRM (multiple reaction monitoring) mode. The matrix-matched calibration curves were constructed using six levels ($0.001{\sim}0.25{\mu}g/mL$) and coefficient of determination ($r^2$) was above 0.99. Recovery results at three concentrations (LOQ, $10{\times}LOQ$, and $50{\times}LOQ$, n=5) were from 80.0 to 108.2% with relative standard deviations (RSDs) less than of 11.4%. For inter-laboratory validation, the average recovery was in the range of 83.5~103.2% and the coefficient of variation (CV) was below 14.1%. All results satisfied the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for oxytetracycline determination in agricultural commodities. This study could be useful for safety management of oxytetracycline residues in agricultural products.

Performance Evaluation of Radiochromic Films and Dosimetry CheckTM for Patient-specific QA in Helical Tomotherapy (나선형 토모테라피 방사선치료의 환자별 품질관리를 위한 라디오크로믹 필름 및 Dosimetry CheckTM의 성능평가)

  • Park, Su Yeon;Chae, Moon Ki;Lim, Jun Teak;Kwon, Dong Yeol;Kim, Hak Joon;Chung, Eun Ah;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.93-109
    • /
    • 2020
  • Purpose: The radiochromic film (Gafchromic EBT3, Ashland Advanced Materials, USA) and 3-dimensional analysis system dosimetry checkTM (DC, MathResolutions, USA) were evaluated for patient-specific quality assurance (QA) of helical tomotherapy. Materials and Methods: Depending on the tumors' positions, three types of targets, which are the abdominal tumor (130.6㎤), retroperitoneal tumor (849.0㎤), and the whole abdominal metastasis tumor (3131.0㎤) applied to the humanoid phantom (Anderson Rando Phantom, USA). We established a total of 12 comparative treatment plans by the four geometric conditions of the beam irradiation, which are the different field widths (FW) of 2.5-cm, 5.0-cm, and pitches of 0.287, 0.43. Ionization measurements (1D) with EBT3 by inserting the cheese phantom (2D) were compared to DC measurements of the 3D dose reconstruction on CT images from beam fluence log information. For the clinical feasibility evaluation of the DC, dose reconstruction has been performed using the same cheese phantom with the EBT3 method. Recalculated dose distributions revealed the dose error information during the actual irradiation on the same CT images quantitatively compared to the treatment plan. The Thread effect, which might appear in the Helical Tomotherapy, was analyzed by ripple amplitude (%). We also performed gamma index analysis (DD: 3mm/ DTA: 3%, pass threshold limit: 95%) for pattern check of the dose distribution. Results: Ripple amplitude measurement resulted in the highest average of 23.1% in the peritoneum tumor. In the radiochromic film analysis, the absolute dose was on average 0.9±0.4%, and gamma index analysis was on average 96.4±2.2% (Passing rate: >95%), which could be limited to the large target sizes such as the whole abdominal metastasis tumor. In the DC analysis with the humanoid phantom for FW of 5.0-cm, the three regions' average was 91.8±6.4% in the 2D and 3D plan. The three planes (axial, coronal, and sagittal) and dose profile could be analyzed with the entire peritoneum tumor and the whole abdominal metastasis target, with planned dose distributions. The dose errors based on the dose-volume histogram in the DC evaluations increased depending on FW and pitch. Conclusion: The DC method could implement a dose error analysis on the 3D patient image data by the measured beam fluence log information only without any dosimetry tools for patient-specific quality assurance. Also, there may be no limit to apply for the tumor location and size; therefore, the DC could be useful in patient-specific QAl during the treatment of Helical Tomotherapy of large and irregular tumors.

Stereospecific Analysis of the Molecular Species of the Triacylglycerols Containing Conjugate Trienoic Acids by GLC-Mass Spectrometry in Combination with Deuteration and Pentafluorobenzyl Derivatization Techniques (중수소화(重水素化), Pentafluorobenzyl화(化)와 GLC-Mass Spectrometry에 의한 Conjugate Trienoic Acid함유(含有) Triacylglycerol 분자종(分子種)의 입체특이적 분석(分析))

  • Woo, Hyo-Kyeng;Kim, Seong-Jin;Joh, Yong-Goe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.214-232
    • /
    • 2001
  • CTA ester bonds in TG molecules were not attacked by pancreatic lipase and lipases produced by microbes such as Candida cylindracea, Chromobacterium viscosum, Geotricum candidium, Pseudomonas fluorescens, Rhizophus delemar, R. arrhizus and Mucor miehei. An aliquot of total TG of all the seed oils and each TG fraction of the oils collected from HPLC runs were deuterated prior to partial hydrolysis with Grignard reagent, because CTA molecule was destroyed with treatment of Grignard reagent. Deuterated TG (dTG) was hydrolyzed partially to a mixture of deuterated diacylglycerols (dDG), which were subsequently reacted with (S)-(+)-1-(1-naphthyl)ethyl isocyanate to derivatize into dDG-NEUs. Purified dDG-NEUs were resolved into 1, 3-, 1, 2- and 2, 3-dDG-NEU on silica columns in tandem of HPLC using a solvent of 0.4% propan-1-o1 (containing 2% water)-hexane. An aliquot of each dDG-NEU fraction was hydrolyzed and (fatty acid-PFB ester). These derivatives showed a diagnostic carboxylate ion, $(M-1)^{-}$, as parent peak and a minor peak at m/z 196 $(PFB-CH_{3})^{-}$ on NICI mass spectra. In the mass spectra of the fatty acid-PFB esters of dTGs derived from the seed oils of T. kilirowii and M. charantia, peaks at m/z 285, 287, 289 and 317 were observed, which corresponded to $(M-1)^{-}$ of deuterized oleic acid ($d_{2}-C_{18:0}$), linoleic acid ($d_{4}-C_{18:0}$), punicic acid ($d_{6}-C_{18:0}$) and eicosamonoenoic acid ($d_{2}-C_{20:0}$), respectively. Fatty acid compositions of deuterized total TG of each oil measured by relative intensities of $(M-1)^-$ ion peaks were similar with those of intact TG of the oils by GLC. The composition of fatty acid-PFB esters of total dTG derived from the seed oils of T. kilirowii are as follows; $C_{16:0}$, 4.6 mole % (4.8 mole %, intact TG by GLC), $C_{18:0}$, 3.0 mole % (3.1 mole %), $d_{2}C_{18:0}$, 11.9 mole % (12.5 mole %, sum of $C_{18:1{\omega}9}$ and $C_{18:1{\omega}7}$), $d_{4}-C_{18:0}$, 39.3 mole % (38.9 mole %, sum of $C_{18:2{\omega}6}$ and its isomer), $d_{6}-C_{18:0}$, 41.1 mole % (40.5 mole %, sum of $C_{18:3\;9c,11t,13c}$, $C_{18:3\;9c,11t,13r}$ and $C_{18:3\;9t,11t,13c}$), $d_{2}-C_{20:0}$, 0.1 mole % (0.2 mole % of $C_{20:1{\omega}9}$). In total dTG derived from the seed oils of M. charantia, the fatty acid components are $C_{16:0}$, 1.5 mole % (1.8 mole %, intact TG by GLC), $C_{18:0}$, 12.0 mole % (12.3 mole %), $d_{2}-C_{18:0}$, 16.9 mole % (17.4 mole %, sum of $C_{18:1{\omega}9}$), $d_{4}-C_{18:0}$, 11.0 mole % (10.6 mole %, sum of $C_{18:2{\omega}6}$), $d_{6}-C_{18:0}$, 58.6 mole % (57.5 mole %, sum of $C_{18:3\;9c,11t,13t}$ and $C_{18:3\;9c,11t,13c}$). In the case of Aleurites fordii, $C_{16:0}$; 2.2 mole % (2.4 mole %, intact TG by GLC), $C_{18:0}$; 1.7 mole % (1.7 mole %), $d_{2}-C_{18:0}$; 5.5 mole % (5.4 mole %, sum of $C_{18:1{\omega}9}$), $d_{4}-C_{18:0}$ ; 8.3 mole % (8.5 mole %, sum of $C_{18:2{\omega}6}$), $d_{6}-C_{18:0}$; 82.0 mole % (81.2 mole %, sum of $C_{18:3\;9c,11t,13t}$ and $C_{18:3 9c,11t,13c})$. In the stereospecific analysis of fatty acid distribution in the TG species of the seed oils of T. kilirowii, $C_{18:3\;9c,11t,13r}$ and $C_{18:2{\omega}6}$ were mainly located at sn-2 and sn-3 position, while saturated acids were usually present at sn-1 position. And the major molecular species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})_{2}$ and $(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})$ were predominantly composed of the stereoisomer of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:3\;9c,11t,13c}$, $sn-3-C_{18:3\;9c,11t,13c}$, and $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13c}$, respectively, and the minor TG species of $(C_{18:2{\omega}6})_{2}(C_{18:3\;9c,11t,13c})$ and $ (C_{16:0})(C_{18:3\;9c,11t,13c})_{2}$ mainly comprised the stereoisomer of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13c}$ and $sn-1-C_{16:0}$, $sn-2-C_{18:3\;9c,11t,13c}$, $sn-3-C_{18:3\;9c,11t,13c}$. The TG of the seed oils of Momordica charantia showed that most of CTA, $C_{18:3\;9c,11t,13r}$, occurred at sn-3 position, and $C_{18:2{\omega}6}$ was concentrated at sn-1 and sn-2 compared to sn-3. Main TG species of $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{18:0})(C_{18:3\;9c,11t,13t})_{2}$ were consisted of the stereoisomer of $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{18:0}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$, respectively, and minor TG species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})_{2}$ and $(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})$ contained mostly $sn-1-C_{18:2{\omega6}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13t}$. The TG fraction of the seed oils of Aleurites fordii was mostly occupied with simple TG species of $(C_{18:3\;9c,11t,13t})_{3}$, along with minor species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_{2}$, $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{16:0})(C_{18:3\;9c,11t,13t})$. The sterospecific species of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:3\;9c,11t,13t}$, sn-3-C_{18:3\;9c,11t,13t}$, $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{16;0}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ are the main stereoisomers for the species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_2$, $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{16:0})(C_{18:3\;9c,11t,13t})$, respectively.