• Title/Summary/Keyword: ionic substance

Search Result 15, Processing Time 0.021 seconds

Analysis of the Level of Cognitive Demands about Concepts of Ionic Compounds and Molecule on Science 2 Textbooks in Junior High School (II) (중학교 과학2 교과서에 서술된 이온 결합 화합물과 분자 내용이 요구하는 인지 수준 분석(제II보))

  • Kang, Soonhee;Bang, Dami;Kim, Sun-Jung
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.739-750
    • /
    • 2012
  • The purpose of this study is to analyze the cognitive demands level of the description about 'pure substance and mixture compound', 'ionic compound', 'molecule' on the 'science2' textbooks by the 2007 revised curriculum. The three types of Curriculum Analysis Taxonomy have been used to analyze the cognitive demands level of those contents on the 6 kinds of 'science2' textbooks. The first, the cognitive demand level about 'pure substance and mixture compound' on many textbooks is a late concrete operational stage because of class inclusion and hierarchical classification. And the descriptions as 'pure substance is conserved even when mixed with other pure substance' is a early formal operational stage. The second, the cognitive demand level about 'ionic compound' and 'molecule' is a early formal operational stage, because of "Formal modeling is the indirect interpretation of reality by deductive comparison from a postulated system with its own rules" and "Atoms have a structure". The third, the terms as 'ionic bonding', 'ionic compound', 'chemical formula', 'covalent bonding', 'covalent compound', and 'molecular formula' have been used on many 'science2' textbooks. Those terms would be used later on 'chemistry I' and 'chemistry II' in senior high school but not even 'science3' and 'science'.

Investigation on Flocculi-floc Interaction and Flocculation in Extracellular Polymeric Substances, Ionic Species and Clay-containing Suspension (생체고분자물질 농도와 이온강도에 따른 점토입자 현탁액의 응집핵-응집체 이군집 응집 특성 연구)

  • Kim, Jae In;Lee, Byung Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.185-193
    • /
    • 2020
  • Bimodal flocculation describes the aggregation and breakage processes of the flocculi (or primary particles) and the flocs in the water environment. Bimodal flocculation causes bimodal size distribution with the two separate peaks of the flocculi and the flocs. Extracellular polymeric substances and ionic species common in the water environment increase the occurrence of bimodal flocculation and flocculi-floc size distribution, under the flocculation mechanisms of electrostatic attraction and polymeric bridging. This study investigated bimodal flocculation and flocculi-floc size distribution, with respect to the extracellular polymeric substance concentration and ionic strength in the kaolinite-containing suspension. The batch flocculation tests comprising 0.12 g/L of kaolinite showed that the highest flocculation potential occurred at the lowest xanthan gum (as extracellular polymeric substances) concentration, under all the ionic strengths of 0.001, 0.01, and 0.1 M NaCl. Also, it was important to note that the higher ionic strength resulted in the higher flocculation potential, at all the xanthan gum concentrations. The bimodal flocculation and flocculi-floc size distribution became apparent in the experimental conditions, which had low and intermediate flocculation potential. Besides the polymeric bridging flocculation, steric stabilization increased the flocculi mass fraction against the floc mass fraction, thereby developing the bimodal size distribution.

Comparative Study on Acute Toxicity of Treated Effluent Containing Salt using Daphnia magna and Vibrio fischeri (염 함유 폐수처리수에 대한 Daphnia magna 및 Vibrio fischeri 급성독성 비교연구)

  • Kim, Jongmin;Shin, Kisik;Yu, Soonju;Lee, Jungseo;Kim, Woongki
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.453-459
    • /
    • 2015
  • This paper aims to evaluate the results of acute toxicity testing with Daphnia mag$Na^+$ and Vibrio fischeri and characteristics of ionic substance of treated effluent which contained salt. Acute toxicity with Daphnia mag$Na^+$ and Vibrio fischeri and salinity of 19 samples (4 business categories) were a$Na^+$lysed. Salinity of effluent could explain the fluctuation of toxicity with D. mag$Na^+$ about 66% ~ 91% ($r^2=0.66{\sim}0.91$). The results of acute toxicity testing with V. fischeri of treated effluent (aggregate manufacture facilities) did not indicate toxicity (TU = 0), whereas that of chemical manufacture facilities indicated toxicity. V. fischeri, a candidate test organism, seemed suitable test organism for acute toxicity testing of effluent except high salinity (above 65‰ ~ 70‰) in aggregate manufacture facilities (nonmetalic minerals facilities). The performance of ion composition about treated effluent of surveyed facilities indicated that ion concentration of $Na^+$ (5,740 mg/L) and $Cl^-$ (9,727 mg/L) showed high level among 6 major ions ($Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $SO_4{^{2-}}$, $Cl^-$) in effluent of nonmetalic minerals facilities. In addition, Clion seemed to influence the D. magna survival rather than $Na^+$ ion.

AEROBIC DEGRADATION OF A NON-IONIC SURFACTANT IN A MEMBRANE BIOREACTOR(MBR)

  • Choi, In-Su;Wiesmann, Udo
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.81-91
    • /
    • 2007
  • A membrane bioreactor (MBR) was used to investigate the aerobic degradation of foam active substance - non-ionic surfactant, APG 2000 UP. The surface aeration using the propeller loop reactor (PLR) guaranteed sufficient $O_2$ for substrate removal and bacteria growth and avoided foam development. Moreover, the cross-flow membrane filtration enabled the separation of the bacteria still loaded with surfactant in the collecting container. The biological degradation of the surfactant with varying hydraulic retention time (HRT) and influent concentration $c_{S0}$ showed high substrate removal of nearly 95% at high volumetric loading rates up to $7.4\;kgCOD\;m^{-3}d^{-1}$ and at sludge loading rates up to 1.8 kgCOD $(kgVSS\;d)^{-1}$ for biomass concentration $c_B\;{\approx}\;constant $. The increasing $c_B$ from 3.4 to $14.5\;gL^{-1}$ TSS respectively sludge retention time (SRT) from 5.1 to 442 d under complete biomass retention by the membrane filtration resulted in high removal of substrate ${\alpha}\;>\;90%$ with reducing excess sludge production.

Influence of Interface Active substances(Ionic and Amphoteric) on Chemical property and Streaming Electrification of Transformer Oil (이온성 및 양성 계면 활성제가 변압기유의 화학적 특성 및 유동대전에 미치는 영향)

  • 김용운;이덕출
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.719-726
    • /
    • 1997
  • This research was conducted to analyze the change of surface tension, viscosity, streaming current and conductivity of transformer oil when it were injected with the interface active substances.(anionic:S-111, cationic:S-121, amphoteric:S-131) The changes properties of the surface tension and viscosity of the oil which were injected with the interface active substances were divided into the changes area and the minimum reduction area. The surface tension and viscosity of the oil which were injected with three different kinds of interface active substances showed remarkable change at the point where the concentration of the substance in anionic, in cationic and in amphoteric were 100[ppm], 10[ppm] and 1[ppm] respectively. The streaming current and conductivity of the same sample oil were also changed at the same densities of the surface tension and viscosity. For this factor, it was possibile for us to interpret the mechanism of the streaming current and conductivity. Therefore the interface active substances of the three kinds were injected into the oil within the limit of optimal volume, prevention effects of electrification were showed more excellence than unmixed insulating oil.

  • PDF

Anticandidal Activity of the Protein Substance from Coptidis Rhizoma (황련에서 분리된 단백질성분의 항진균효과)

  • Kim Hyunkyung;Lee Jue-Hee;Shim Jin Kie;Han Yongmoon
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.323-329
    • /
    • 2005
  • Antimicrobial peptides are evolutionary ancient weapons for animal and plant species to depend themselves against infectious microbes. In the present study, we investigated if an antimicrobial peptide was produced from Coptidis Rhizoma. For the determination, protein substance from the medicinal plant was isolated by various preparations. Among the preparations, the protein portion dissolved in phosphate-buffered saline solution (CRP-DS) that contained the most amount of protein $(90\%)$ resulted in maximal inhibition of Candida albicans which causes local and systemic infections. Analyses by gel-electrophoresis and gel-permeation chromatography showed the CRP-DS formed a single band of approximately 11.8 KDa as molecular size. Antifungal activity of the CRP-DS was almost equivalent to antifungal activity by fluconazole, resulting in MIC (minimal inhibitory concentration) of approximately $50{\mu}g/ml$. The antifungal activity was a dose-dependent. The antifungal activity appeared to be inactivated by heat-treatment and ionic strength, respectively. In a murine model, the CRP-DS enhanced resistance of mice against disseminated candidiasis. The HPLC analysis demonstrated maximum $4\%$ of berberine as residual content in the CRP-DS preparation resulted in no influence on the antifungal activity. In addition, protein portion isolated from Phellodendri Cortex producing the alkaloid component like Coptidis Rhizoma had no such anticandidal effect. These results indicate that the protein substance from Coptidis Rhizoma was responsible for the antifungal activity.

A Study on the Determination of Ionic and Molecular Weight of Dissolved Substance by Dialysis Method (II). Effect of the Agitation on Dialysis (透析法에 依한 이온量 및 分子量의 決定에 關한 硏究 (第二報). 攪拌이 透析에 미치는 影響)

  • Yun Kyoung Shin;Jhun Lee
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.213-223
    • /
    • 1973
  • This report has been focused on the studies of the hydraulic pressure distribution which is created by the agitation of the both liquids, dialysing solution and solvent, on either side of the dialysis membrane surface. Agitators of the both liquids have been investigated and developed which can counterbalance the hydraulic pressures. The effects of the agitation velocities on the dialysing velocity have been studied under the conditions which allow the uniform dialysis on the whole surface of the dialysis membrane. Each agitation velocity of the dialysing solution and solvent, at which the dialysis coefficient is obtained most precisely, has been determined.

  • PDF

A Study on the Determination of Ionic and Molecular Weight of Dissolved Substance by Dialysis Method (Ⅲ). Effects of the Outer Solution Volume and the Dialyzing Temperature on Dialysis (透析法에 依한 이온量 및 分子量의 決定에 關한 硏究 (第三報). 外部液量 및 透析溫度가 透析에 미치는 影響)

  • Shin, Yun-Kyoung;Rhee Jhun
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.138-142
    • /
    • 1974
  • In a series of investigation of dialysis conditions at which the dialysis coefficient can be expressed as a constant, accumulation limits of the diffusing particles in the outer solution where the accumulation effect to the dialysis may be negligible were studied for various volume size of the outer solution. Dependence of the dialysis coefficient on the dialyzing temperature was also studied.

  • PDF

A Study on the Determination of Ionic and Molecular Weight of Dissolved Substance by Dialysis Method (Ⅰ). Improvements of the Dialysis Apparatus and Its Operations (透膜法에 依한 이온量 및 分子量의 決定에 關한 硏究 (I) 透析裝置 및 實驗方法의 改良)

  • Shin Yun Kyong;Rhee Jhun
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.304-313
    • /
    • 1972
  • This paper reports the improvements of the dialysis apparatus and operations since there are some problems to be improved in the dialysis method which is applied to determine the ionic and molecular weight of dissolved particles. The hook gauge was utilized in order to control the surface level of the dialysing solution and the solvent to be equal with the precision of 0.02 mm to minimize the osmotic and filtration effects. An accurate agitation velocity for both solutions was maintained and so was the same temperature for both solutions with ${\pm}0.01^{\circ}C$ precision. The dialysis membrane was fixed uniformly and flatly on one end of the dialysis cylinder by using a newly developed ring. The volume change of the dialysing solution during the dialysis was reduced to the range of -1.62 ~ +0.92%. Optimum duration of dialysis was searched from the relation between the osmotic and filtration effect and the pore size of the membrane.

  • PDF

Pollution characteristics of PM2.5 observed during January 2018 in Gwangju (광주 지역에서 2018년 1월 측정한 초미세먼지의 오염 특성)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Jang, Yu Woon;Lim, Yong Jae;Ghim, Young Sung
    • Particle and aerosol research
    • /
    • v.15 no.3
    • /
    • pp.91-104
    • /
    • 2019
  • In this study, hourly measurements of $PM_{2.5}$ and its major chemical constituents such as organic and elemental carbon (OC and EC), and ionic species were made between January 15 and February 10, 2018 at the air pollution intensive monitering station in Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were collected at the same site and analyzed for OC, EC, water-soluble OC (WSOC), humic-like substance (HULIS), and ionic species. Over the whole study period, the organic aerosols (=$1.6{\times}OC$) and $NO_3{^-}$ concentrations contributed 26.6% and 21.0% to $PM_{2.5}$, respectively. OC and EC concentrations were mainly attributed to traffic emissions with some contribution from biomass burning emissions. Moreover, strong correlations of OC with WSOC, HULIS, and $NO_3{^-}$ suggest that some of the organic aerosols were likely formed through atmospheric oxidation processes of hydrocarbon compounds from traffic emissions. For the period between January 18 and 22 when $PM_{2.5}$ pollution episode occurred, concentrations of three secondary ionic species ($=SO{_4}^{2-}+NO_3{^-}+NH_4{^+}$) and organic matter contributed on average 50.8 and 20.1% of $PM_{2.5}$, respectively, with the highest contribution from $NO_3{^-}$. Synoptic charts, air mass backward trajectories, and local meteorological conditions supported that high $PM_{2.5}$ pollution was resulted from long-range transport of haze particles lingering over northeastern China, accumulation of local emissions, and local production of secondary aerosols. During the $PM_{2.5}$ pollution episode, enhanced $SO{_4}^{2-}$ was more due to the long-range transport of aerosol particles from China rather than local secondary production from $SO_2$. Increasing rate in $NO_3{^-}$ was substantially greater than $NO_2$ and $SO{_4}^{2-}$ increasing rates, suggesting that the increased concentration of $NO_3{^-}$ during the pollution episode was attributed to enhanced formation of local $NO_3{^-}$ through heterogenous reactions of $NO_2$, rather than impact by long-range transportation from China.