• 제목/요약/키워드: ionic polymers

검색결과 95건 처리시간 0.025초

Diffusion of Water in Sulfonated Polystyrene Ionomers

  • Manoj, N.R.;Ratna, D.;Weiss, R.A.
    • Macromolecular Research
    • /
    • 제12권1호
    • /
    • pp.26-31
    • /
    • 2004
  • Using gravimetry, we have studied the diffusion of water into sulfonated polystyrene ionomers. Diffusion coefficients were calculated from Fick's equation. The water sorption was found to be dependent on the ion content (3.6-11 mol%) and the nature of the cation (H, Na, Li, or Zn). The sorption kinetics indicates a slight deviation from Fickian behavior. We used the analytical solution of Fick's equation to evaluate the concentration profiles, which are in good agreement with the experimental results.

Synthesis and Properties of Poly(2-ethynyl-N-propargylpyridinium bromide)

  • 갈용순;이원철;귀태롱;이상섭;배장순;김봉식;장상희;진성호
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권2호
    • /
    • pp.183-188
    • /
    • 2001
  • Ionic conjugated polymer, poly(2-ethynyl-N-propargylpyridinium bromide), was prepared by the cyclopolymerization of 2-ethynyl-N-propargylpyridinium bromide on using various transition metal catalysts, or by thermal methods without adding catalyst. The polymerization of 2-ethynyl-N-propargylpyridinium bromide catalyzed by PdCl2 gave the resulting polymers in relatively high yields. The polymer structure was characterized by various instrumental methods to confirm the conjugated polymer backbone structure carrying cumulated pyridine moiety. The polymers prepared by PdCl2 in DMSO or m-cresol were completely soluble in DMF, DMSO, and formic acid. The inherent viscosities of the resulting polymers were in the range of 0.07-0.19 dL/g. Thermal properties of the polymers were also discussed.

Improvement of Mechanical and Electrical Properties of Poly(ethylene glycol) and Cyanoresin Based Polymer Electrolytes

  • Oh Kyung-Wha;Choi Ji-Hyoung;Kim Seong-Hun
    • Fibers and Polymers
    • /
    • 제7권2호
    • /
    • pp.89-94
    • /
    • 2006
  • Ionic conductivity and mechanical properties of a mixed polymer matrix consisting of poly(ethylene glycol) (PEG) and cyanoresin type M (CRM) with various lithium salts and plasticizer were examined. The CRM used was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) with a molar ratio of 1:1, mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) at a volume ratio of 1:1. The conductive behavior of polymer electrolytes in the temperature range of $298{\sim}338\;K$ was investigated. The $PEG/LiClO_4$ complexes exhibited the highest ionic conductivity of ${\sim}10^{-5}S/cm$ at $25^{\circ}C$ with the salt concentration of 1.5 M. In addition, the plasticized $PEG/LiClO_4$ complexes exhibited improvement of ionic conductivity. However, their complexes showed decreased mechanical properties. The improvement of ionic conductivity and mechanical properties could be obtained from the polymer electrolytes by using CRM. The highest ionic conductivity of PEG/CRM/$LiClO_4$/(EC-PC) was $5.33{\time}10^{-4}S/cm$ at $25^{\circ}C$.

이온성 막을 이용한 역삼투압 막 분리 공정에서 전해질 수용액의 투과분리 특성연구 (A Characterization of the Permeation and Separation of Electrolyte Solutions Through Charged Membranes in the Reverse Osmosis Process)

  • 염충균;최정환;이정민;서동수
    • 멤브레인
    • /
    • 제11권1호
    • /
    • pp.22-28
    • /
    • 2001
  • 이온성 고분자에 비이온성 고분자를 섞어 이온 함량을 조절함으로써 다양한 전하량을 갖는 이온성 막을 제조하였다. 비이온성 고분자로는 폴리비닐알콜, 음이온성 고분자로는 알긴산 나트륨, 양이온성 고분자로는 키토산을 사용하였으며, 이들 이온성 고분자막을 사용하여 여러 전해질 수용액에 대한 투과 및 분리특성을 관찰하였다. 막 내부에 이온성 고분자 함량이 많을수록 친수성 특성을 보였으며, 순수투과 및 용액투과 속도가 증가함을 관찰할 수 있었고, 또한 투과속도는 막의 팽윤 거동에 의해 결정됨을 확인할 수 있었다. 용질 배제율의 경우는 막과 투과용질간의 정전기적 인력, 즉 Donnan exclusion에 의해 결정이 되며, 정전기적 인력이 비슷한 경우는 분자체 효과에 의해 분리됨이 관찰되었다.

  • PDF

이온성 고분자-금속 복합체의 수중 응용 (A Review : Underwater Applications of Ionic Polymer -Metal Composites)

  • 허석;제이슨파켓;김광진
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.981-990
    • /
    • 2004
  • Specialized propulsors for naval applications have numerous opportunities in terms of research, design and fabrication of an appropriate propulsor. One of the most important components of any propulsor is the actuator that provides the mode of locomotion. Ionomeric electro-active polymer may offer an attractive solution for locomotion of small propulsors. A common ionomeric electro-active polymer, ionic Polymer-Metal Composites (IPHCs) give large true bending deformations under low driving voltages, operate in aqueous environments, are capable of transduction and are relatively well understood. IPMC fabrication and operation are presented to further elucidate the use of the material for a propulsor. Various materials, including IPMCs, are investigated and a simplified propulsor model is explored.

DETERMINATION OF THE CATIONIC DEMAND OF PAPERMAKING STOCK USING CHROMOPHORIC LABELED CATIONIC POLYMERS

  • Hiroo Tanaka;Hideaki Ichiura;Takuya Kitaoka
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 1999년도 Proceedings of Pre-symposium of the 10th ISWPC
    • /
    • pp.79-83
    • /
    • 1999
  • A cationic demand(CD) is a very useful indication for determining the optimum dosage rate of retention aids to the papermaking stock at the wet end. Polyelectrolyte titration has been most often used to determine a CD. Highly accurate results can be obtained by this method when the ionic strength of sample is low. But this is accompanied by the serious errors when the ionic strength is higher than that corresponding to 20 milli molar(mM) monovalent, 2 mM divalent or 0.2 mM trivalent ions because of no occurrence of the end point of titration. Therefore, it is very difficult or almost impossible for the conventional method to be applied to the industrial suspensions such as papermaking stock and industrial waste water. Then a novel method using chromophoric labeled cationic polymer which can be applicable to the sample with high ionic strength has been developed.

이온성 액체를 이용한 바이오폴리머 기반의 소재 개발 및 생명공학 분야로의 응용 (Development of Biopolymer-based Materials Using Ionic Liquids and Its Biotechnological Application)

  • 이상현;박태준
    • KSBB Journal
    • /
    • 제25권5호
    • /
    • pp.409-420
    • /
    • 2010
  • Biopolymer-based materials recently have garnered considerable interest as they can decrease dependency on fossil fuel. Biopolymers are naturally obtainable macromolecules including polysaccharides, polyphenols, polyesters, polyamides, and proteins, that play an important role in biomedical applications such as tissue engineering, regenerative medicine, drug-delivery systems, and biosensors, because of their inherent biocompatibility and biodegradability. However, the insolubility of unmodified biopolymers in most organic solvents has limited the applications of biopolymer-based materials and composites. Ionic liquids (ILs) are good solvents for polar organic, nonpolar organic, inorganic and polymeric compounds. Biopolymers such as cellulose, chitin/chitiosan, silk, and DNA can be fabricated from ILs into films, membranes, fibers, spheres, and molded shapes. Various biopolymer/biopolymer and biopolymer/synthetic polymer composites also can be prepared by co-dissolution of polymers into IL mixtures. Heparin/biopolymer composites are especially of interest in preparing materials with enhanced blood compatibility.

Polymers with Phosphodiester Bonds: from Models of Biopolymers to Liquid Membranes and Polymer-Inorganic Hybrids

  • Penczek, Stanislaw
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.89-89
    • /
    • 2006
  • Polyalkylene phosphates - polymers that are built on the repeating unit of the diester of phosphoric acid: -[OP(O)(OH)Oalkylene]-, are known to form backbones of nucleic and teichoic acids. Various synthetic ways will be reported for the synthesis of the bare chains, where "alkylene" in the formula above means mostly two or three methylene groups. Some other structures have also been prepared. Several applications of these polymers are to be discussed, namely as liquid membranes, as components of two-block copolymers (ionic-nonionic diblock dihydrophilic) used as modifiers of CaCO3 crystallization, and as components of the inorganic-polymer hybrid materials. Some other applications in the biomedical field will also be discussed.

  • PDF

Rheology of hydrophobic-alkali-soluble-emulsions (HASE) and the effects of surfactants

  • Lau, A.K.M.;Tiu, C.;Kealy, T.;Tam, K.C.
    • Korea-Australia Rheology Journal
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 2002
  • Steady and dynamic shear properties of two hydrophobically modified alkali soluble emulsions (HASE), NPJI and NPJ2, were experimentally investigated. At the same polymer concentration, NPJ1 is appreciably more viscous and elastic than NPJ2. The high hydrophobicity of NPJ1 allows hydrophobic associations and more junction sites to be created, leading to the formation of a network structure. Under shear deformation, NPJ1 exhibits shear-thinning behaviour as compared with Newtonian characteristics of NPJ2. NPJ1 and NPJ2 exhibit a very high and a low level of elasticity respectively over the frequency range tested. For NPJ1, a crossover frequency appears, which is shifted to lower frequencies and hence, longer relaxation times, as concentration increases. Three different surfactants anionic SDS, cationic CTAB, and non-ionic TX-100 were employed to examine the effects of surfactants on the rheology of HASE. Due to the different ionic behaviour of the surfactant, each type of surfactant imposed different electrostatic interactions on the two HASE polymers. In general, at low surfactant concentration, a gradual increase in viscosity is observed until a maximum is reached, beyond which a continuous reduction of viscosity ensues. Viscosity development is a combined result of HASE-surfactant interactions, accompanied by constant rearrangement of the hydrophobic associative junctions, and electrostatic interactions.