Diffusion of Water in Sulfonated Polystyrene Ionomers

  • Manoj, N.R. (Naval Materials Research Laboratory Anand Nagar) ;
  • Ratna, D. (Naval Materials Research Laboratory Anand Nagar) ;
  • Weiss, R.A. (Institute of Materials Science University of Connecticut)
  • Published : 2004.02.01

Abstract

Using gravimetry, we have studied the diffusion of water into sulfonated polystyrene ionomers. Diffusion coefficients were calculated from Fick's equation. The water sorption was found to be dependent on the ion content (3.6-11 mol%) and the nature of the cation (H, Na, Li, or Zn). The sorption kinetics indicates a slight deviation from Fickian behavior. We used the analytical solution of Fick's equation to evaluate the concentration profiles, which are in good agreement with the experimental results.

Keywords

References

  1. Diffusion of Electrolytes in Polymers G.E.Zaikov;A.C.Iordauskii;U.S.Markin
  2. Diffusion in Polymers J.Crank;G.S.Park
  3. Trends in Polym. Sci. v.410 G.Rossi
  4. Engineering Design for Plastics C.E.Rogers;E.Baer(ed.)
  5. Handbook of Polymer-Fiber Composites F.R.Jones;F.R.Jones(ed.)
  6. Methods of Experimental Physics R.M.Felder;G.S.Huvard
  7. Ion-containing Polymers A.Eisenberg;M.King
  8. NATO ASI Series, Series C:Mathematical and Physical Sciences v.198 Structure and Properties of Ionomers R.D.Lundberg;M.Pineri;A.Eisenberg(eds.)
  9. J. Polym. Prepr.(Am. Chem. Soc., Div. Polym. Chem.) v.29 R.Staz
  10. Indian J. Technol. v.31 R.D.Lundberg;P.K.Agarwal
  11. Ionomers - Synthesis, Structure, Properties and Applications M.R.Tant;K.A.Mauritz;G.L.Wilkes(eds.)
  12. Macromolecules v.32 S.Mani;R.A.Weiss;C.E.Williams;S.F.Hahn https://doi.org/10.1021/ma9900986
  13. Polymer v.34 N.R.Manoj;P.P.De;S.K.De
  14. Encyclopedia of Polymer Science and Technology J.S.Kim;J.I.Kroschwitz(ed.)
  15. J. Polym. Sci. Macromol. Rev. v.16 W.J.MacKnight;T.R.Earnest Jr. https://doi.org/10.1002/pol.1981.230160102
  16. J. Polym. Sci. Polym. Phys. v.33 M.A.Del Mobile;G.Mensitieri;L.Nicholas;R.A.Weiss https://doi.org/10.1002/polb.1995.090330812
  17. Macromolecules v.6 A.Eisenberg;M.Navratil https://doi.org/10.1021/ma60034a027
  18. J. Polym. Sci. Polym. Chem. v.17 D.Gravier;M.Litt;E.Baer https://doi.org/10.1002/pol.1979.170171116
  19. J. Appl. Polym. Sci. v.21 S.C.Yo;A.Eisenberg https://doi.org/10.1002/app.1977.070210401
  20. J. Appl. Polym. Sci. v.29 M.Escoubes;M.Pineri;S.Gauthier;A.Eisenberg https://doi.org/10.1002/app.1984.070290420
  21. J. Polym. Sci. Polym. Phys. v.23 N.L.Brockman;A.Eisenberg https://doi.org/10.1002/pol.1985.180230607
  22. US Patent 3870814 H.S.Makowski;R.D.Lundberg;G.E.Singhal
  23. Polymer v.37 D.Dutta;R.A.Weiss;J.He https://doi.org/10.1016/0032-3861(96)82912-0
  24. Ion Exchange F.Helfferich
  25. Mathematics of Diffusion J.Crank
  26. Liquid Transport Processes in Polymeric Materials-Modelling and Industrial Applications J.M.Vergnaud
  27. Polym. Eng. Sci. v.26 J.S.Chiou;D.R.Paul https://doi.org/10.1002/pen.760261710
  28. J. Appl. Polym. Sci. v.65 T.M.Aminabhavi;S.F.Harlapur https://doi.org/10.1002/(SICI)1097-4628(19970725)65:4<635::AID-APP2>3.0.CO;2-L
  29. J. Polym. Sci. Polym. Phys. v.28 B.Hird;A.Eisenberg https://doi.org/10.1002/polb.1990.090281002
  30. Macromolecules v.23 A.Eisenberg;B.Hird;R.B.Moore https://doi.org/10.1021/ma00220a012
  31. Macromolecules v.27 J.S.Kim;R.J.Jackman;A.Eisenberg https://doi.org/10.1021/ma00088a021
  32. Polymer v.42 J.S.Kim;Y.H.Nah;S.S.Nah https://doi.org/10.1016/S0032-3861(01)00063-5
  33. J. Appl. Polym. Sci. v.32 Y.K.Itoh;Y.Tsujita;A.Takizawa;T.Kinoshito https://doi.org/10.1002/app.1986.070320135
  34. Polymer v.21 N.L.Thomas;A.H.Windle https://doi.org/10.1016/0032-3861(80)90316-X
  35. J. Polym. Sci. Polym. Phys. v.19 T.D.Gierke;G.E.Munn;F.E.Wilson https://doi.org/10.1002/pol.1981.180191103