• Title/Summary/Keyword: ionic groups

Search Result 165, Processing Time 0.021 seconds

Binding of Methylene Blue to two types of water soluble polymer and its removal by polyelectrolyte enhanced ultrafiltration

  • Mansour, Nadia Cheickh;Ouni, Hedia;Hafiane, Amor
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • The interactions of water soluble polymers with dye are studied by ultrafiltration using a molecular weight cut off of 10 KDa regenerated cellulose ultrafiltration membrane. Two water-soluble polymers, namely Poly (Sodium-4 Styrenesulfonate) (PSS) and Poly (Vinyl Alcohol) (PVA) were selected for this study. The effects of process parameters, such as, polyelectrolyte concentrations, transmembrane pressure, ionic strength and pH of solution on dye retention and permeation flux were examined. PSS enhanced ultrafiltration achieved dye retention as high as 99% as a result of complexation between polyanion containing aromatic groups and cationic dye. This result was confirmed by the red shift. The retention of dye decreases as the salt concentration increases, a high retention was obtained at pH above 4. However, in case of PVA, relatively low retention (50%) was observed. Ionic strength and pH has no significant effect on the removal of MB. The permeate flux depended slightly on polyelectrolytes concentrations, transmembrane pressure, salt concentration and pH.

Electrochemical Properties of 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)siloles as Anode Active Material and Solid-state Electrolyte for Lithium-ion Batteries

  • Hyeong Rok Si;Young Tae Park
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.429-440
    • /
    • 2023
  • 1,1-Dialkyl-2,5-bis(trimethylsilylethynyl)-3,4-diphenylsiloles (R=Et, i-Pr, n-Hex; 3a-c) were prepared and utilized as anode active materials for lithium-ion batteries; 3a was also used as a filler for the solid-state electrolytes (SSE). Siloles 3a-c were prepared by substitution reactions in which the two bromine groups of 1,1-dialkyl-2,5-dibromo-3,4-diphe- nylsiloles, used as precursors, were substituted with trimethylsilylacetylene in the presence of palladium chloride, copper iodide, and triphenylphosphine in diisopropylamine. Among siloles 3a-c, 3a had the best electrochemical properties as an anode material for lithium-ion batteries, including an initial capacity of 758 mAhg-1 (0.1 A/g), which was reduced to 547 mAhg-1 and then increased to 1,225 mAhg-1 at 500 cycles. A 3a-composite polymer electrolyte (3a-CPE) was prepared using silole 3a as an additive at concentrations of 1, 2, 3, and 4 wt.%. The 2 wt.% 3a-CPE composite afforded an excellent ionic conductivity of 1.09 × 10-3 Scm-1 at 60℃, indicating that silole 3a has potential applicability as an anode active material for lithium-ion batteries, and can also be used as an additive for the SSE of lithium-ion batteries.

Characterization and Solution Behavior of Polyethylene-based Ionomer Particles in Water (물에서의 폴리에틸렌계 아이오노머 입자 특성과 용액 거동)

  • Yeo, Sang Ihn;Woo, Kyu Whan
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.5
    • /
    • pp.512-518
    • /
    • 1998
  • In this study, various thermodynamic and hydrodynamic parameters characterizing the solution properties of polyethylene ionomer particles in water were determined at $30^{\circ}C$ by means of light scattering and viscosity measurements. Based on the experimental data, we investigated the solution behavior of three kinds of polyethylene ionomers, which are different in composition of the pendant ionic groups of COOK, COOH and $CONH_{2}$, and characterized their particle properties. Ionomers containing 7.6 mol% potassium salt only behave as flexible coils in a relatively good solvent state. On the other hand, two ionomers containing 3.8 mol% amide group together with potassium salt form the compact particles. In addition, the concentration dependence of the effective diffusion coefficient $(D_{eff})$ and the reduced viscosity of the latter ionomers showed the opposite trend from the former, indicating that the composition of the pendant ionic groups have a great influence on the interparticle interaction of ionomers formed in water.

  • PDF

Preparation and Characterization of Poly(Arylene Ether) Having Heterocyclic Quaternary Ammonium Functional Groups for Anion Exchange Membranes (음이온교환막용 헤테로고리형 4차 암모늄 작용기를 갖는 폴리(아릴렌 이써)의 제조 및 특성 분석)

  • LEE, SANG HYEOK;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.372-382
    • /
    • 2022
  • In this study, anion exchange membranes were prepared by synthesizing the main chain into a poly(arylene ether) (PAE) structure, and the structures capable of improving the physical and chemical stability of the membrane by introducing a heterocyclic quaternary ammonium functional groups were studied. The chemical structure and thermal properties of the prepared polymer were confirmed by 1H-NMR, FT-IR, TGA, and DSC, and surface analysis was performed through AFM measurement. Additionally, dimensional stability and chemical properties was studied by measuring water uptake and swelling ratio, IEC and ionic conductivity. At 90℃, the quaternized poly(arylene ether) (QPAE)/1-methylpiperidine (MP) membrane exhibited the highest ionic conductivity of 27.2 mS cm-1, while the QPAE/1-methylimidazole (MI) membrane and QPAE/1-methylmorpholine (MM) membrane exhibited values of 14.5 mS cm-1 and 11.5 mS cm-1, respectively. In addition, the prepared anion exchange membrane exhibited high chemical stability in alkaline solution.

The Effects of Surface Functional Groups to Protein Adsorption (단백질흡착에 있어서 표면작용기의 영향)

  • 하기성
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.318-324
    • /
    • 1992
  • The adsorption characteristics of bovine serum albumin(BSA) on the modified carbon fiber and cellulose surfaces were investigated. In order to define the effects of solid surface characteristics on protein adsorption, surfaces of carbon fiber and cellulose were modified by physical and chemical treatment. The amounts of BSA adsorbed onto various solid surfaces were evaluated by batch method under various pH and ionic strength. The amount of adsorbed BSA was highly dependent on pH as well as surface functional groups.

  • PDF

Immobilization of Fructosyltransferase to a Porous Carrier Bearing Quaternary Alkyl Alkanolammonium Groups (Quaternary Alkyl Alkanolammonium기를 가지는 다공성 지지체에 Fructosyltransferase의 고정화)

  • 정미선;이선희;전덕영;황금택;엄태붕
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.534-539
    • /
    • 1997
  • In order to reuse enzyme efficiently, a mthod for ionic binding of fructosyltransferase to a porous carrier bearing quaternary alkyl alkanolammonium groups was investigated. The fructosyltransferase activity of the immobilized enzyme increased with increasing amount of loaded enzyme, and maximally reached 770U/g of the carrier when loaded amount of the enzyme was 18.2 mg/g carrier. The immobilized fructosyltransferase had optimum pH and temperature of 7.5 and 45$^{\circ}C$, respectively, whereas soluble enzyme had 6.5 and 55$^{\circ}C$: the Km value for the immobilized enzyme was 27.8 mM for sucrose, which was the same as that of soluble enzyme. In a batch reactor, the enzyme produced a mixture of fructooligosaccharides, mainly F$_2$G, from sucrose with the slight loss of enzyme activity during continuous operation of 12 days at 42$^{\circ}C$.

  • PDF

Characterizations of Membrane for Water Treatment: Surface Charge Analysis by Electrophoresis and Acidity Measurements

  • Yongki Shim;Lee, Sangyoup;Moon, Seung-Hyeon;Jaeweon Cho
    • Korean Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.56-59
    • /
    • 2000
  • The surface charge properties of a polymeric NF and a ceramic UF membranes were characterized in terms of zeta potential and acidity. Both the negative zeta potential and acidity values increased as pH increases due to ionizable acidic functional groups. Increased ionic strength reduced the acidity of the negatively-charged membrane surface as anticipated. Through these results, it can be envisioned are used to reject solutes with ionizable functional groups. Fouling of the negatively-charged membrane with natural organic matter (NOM) having a negative charge density was also investigated with respect to the surface charge. The surface charge of the NF membrane increased negatively when greater NOM adsorption onto the membrane surface occured.

  • PDF

Plasticization in Unclustered Poly(methyl methacrylate) Ionomers

  • 김준섭;김희석;Adi Eisenberg
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.625-628
    • /
    • 1998
  • The dynamic mechanical properties of the unclustered cesium neutralized poly(methyl methacrylate-co-methacrylic acid) ionomers plasticized with three different plasticizers of low molecular weight were investigated. It was found that the effectiveness of the plasticization followed the order: glycerol (Gly) 4-decylaniline (4DA) >dioctyl phthalate (DOP). For the ionomer plasticized with Gly, the only effect was a significant decrease in the Tg. Thus it is concluded that the polar plasticizer not only increases the mobility of the ionomer but also dissolves the ionic groups. In the case of the 4DA-plasticized ionomer, both a drastic decrease in the Tg and the appearance of a second glass transition were observed. Therefore, it is suggested that the nonpolar 4DA molecules partition evenly in the poly(methyl methacrylate) matrix and cluster phases via hydrogen bonding between the aniline group of the plasticizer and the carbonyl groups of the ionomer. As a result, the Tg is lowered, multiplets can form, and the material behaves like a clustered ionomer.

Optimum Chain Extension and Change of the Average Particle Size of Aqueous Polyurethane Dispersion (수분산 폴리우레탄 제조시 최적 사슬연장 조건과 입도 변화에 관한 연구)

  • Kong, H.C.;Jhon, Y.K.;Cheong, I.W.;Kim, J.H.
    • Journal of Adhesion and Interface
    • /
    • v.3 no.2
    • /
    • pp.9-16
    • /
    • 2002
  • In the synthesis of water-based polyurethane using self-emulsification process, after being neutralized, polyurethane pre-polymers containing ionic pendant groups are dispersed by simple convective mixing. Preparation of dispersion is followed by chain extension reaction, which is considered as important step for growth of the molecular weight of polyurethane. In this work, pH variations in the aqueous phase were monitored during the chain extension process in the presence of water-soluble diamines. The optimum degree of chain extension and the average particle size in the polyurethane dispersions were examined with varying ionic pendent group contents, type of chain extenders, and feed rate of chain extenders, The initial pH value in the aqueous phase linearly increased and the optimum chain extension point could be obtained from the intersection of two linear lines having different slopes, All average particle sizes before chain extension reaction were almost same, however, the final average particle size increased as feed rates of chain extenders increased, In addition, as the ionic pendant group contents increased, the particle size decreased since the hydrophilicity and hydrodynamic volume increased. As carbon numbers of the chain extenders increased, the final particle size increased significantly. From the results, it was concluded that the chain extension reaction took place among the particles not only in a particle.

  • PDF

Tolerance Range Analysis of Fish on Chemical Water Quality in Aquatic Ecosystems

  • Kim, Jeong-Kyu;Han, Jeong-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.459-470
    • /
    • 2010
  • In this study, we analyzed fish tolerance guilds in mainstems and tributaries of 65 streams and rivers arid their relations to water quality using dataset sampled from April to November, 2009. For the study, water quality parameters including biochemical oxygen demand (BOD), electric conductivity (EC), total nitrogen (TN), total phosphorus (TP), ammonia nitrogen ($NH_3$-N), nitrate nitrogen ($NO_3$-N) and phosphate phosphorus ($PO_4$-P) were analyzed in the laboratory and also tolerance ranges in 3 category fishes of sensitive, intermediate, and tolerant species with high abundance were analyzed. According to fish guild analysis, tolerant species was 58% of the total community and the proportion of omnivore species was 63% of the total, indicating a degradation of habitats and water quality. Water quality was shown typical longitudinal gradients from the headwater to the down-river; TN and TP increased toward the down-rivers except for the big point-source area and ionic contents, based on, electric conductivity showed same pattern. Tolerance guild analysis of 9 major species with high abundance indicated that sensitive groups had narrower tolerance range in the water quality than the groups of intermediate and tolerant species. In contrast, tolerant groups including Zacco platypus, Carassius auratus, and Opsarichthys uncirostris amurensis had wider tolerance ranges than the groups of sensitive and intermediate species. Thus, each group was evidently segregated from the tolerance levels. Principal Component Analysis (PCA) employed for the relations of water quality to fish species in each groups suggests that water quality had highest eigenvalues with fish species in the 1st axis of the PCA and nitrogen (TN, $NH_3$-N, $NO_3$-N) and phosphorus (TP) were key components differentiating three groups of sensitive, intermediate and tolerance guilds.