• Title/Summary/Keyword: ionic conduction

Search Result 124, Processing Time 0.022 seconds

Neurobiology and Neurobiomechanics for Neural Mobilization (신경가동성에 대한 신경생물학과 신경생역학적 이해)

  • Kim Jae-Hun;Yuk Goon-Chan;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.67-74
    • /
    • 2003
  • Nervous system is clinically important, and involved in most disorders directly or indirectly. It could be injury and be a source of symptoms. Injury of central or peripheral nervous system injury may affect that mechanism and interrupt normal function. An understanding of the concepts of axonal transport is important for physical therapist who treat injury of nerves. Three connective tissue layers are the endoneurium, perineurium, epineurium. Each has its own special structural characteristics and functional properties. The blood supply to the nervous system is well equipped in all dynamic and static postures with intrinsic and extrinsic vasculation. After nerve injury, alternations in the ionic compression or pressures within this environment may interfere with blood flow and, consequently conduction and the flow of axoplasm. The cytoskeleton are not static. On the contrary, elements of the cytoskeleton are dynamically regulated and are very likely in continual motion. It permits neural mobility. There are different axonal transport systems within a single axon, of which two main flows have been identified : First, anterograde transport system, Secondly, retrograde transport system. The nervous system adapts lengthening in two basic ways. The one is that the development of tension or increased pressure within the tissues, increased intradural pressure. The other is movements that are gross movement and movement occurring intraneurally between the connective tissues and the neural tissues. In this article, we emphasize the biologic aspects of nervous system that influenced by therapeutic approaches. Although identified scientific information in basic science is utilized at clinic, we would attain the more therapeutic effects and develop the physical therapy science.

  • PDF

Study on Mutual Relation between the Level of Deterioration Influenced by the Changes of Chemical and Physical Properties and the Change of Dielectric Constant for Engine Oil - Gasoline Engine Oil (엔진오일의 화학적 및 물리적 변화에 의한 퇴화정도와 유전상수 변화에 관한 상호관계 연구 - 가솔린엔진오일)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.260-268
    • /
    • 2006
  • The dielectric constants of used gasoline engine oils were obtained at a few temperatures and a frequency. Through analyzing the characteristics of dielectric constant, the related correlation between the changes in dielectric constants of oil and the degree of oil deterioration is going to be found. The dielectric constant was calculated using cross capacitances measured by a sensor tube. As results of the measurement of the fresh engine oil's dielectric constant, it was found that the value of dielectric constant was set down below $60^{\circ}C$ regardless changing frequency. Further, above 6 kHz, the dielectric constant was set down even if temperature was above $100^{\circ}C$ Therefore, for the measurement of used oils, it was selected the frequency of 6 kHz,,and the temperature of $80^{\circ}C$ preventing a certain ionic-conduction effects on the measured dielectric constant and the evaporation of a certain fluid mixed with engine oil. Specially, the effects of the mixing fluid like coolant, water and fuel on the fresh engine oil's dielectric constant were studied. It was found that the oil mixed with coolant showed the highest value, next water, and the lowest fuel. As results of the measurement of the used engine oil's dielectric constant, it was found that the possible changed rate of the used engine oil's dielectric constant based on the warning limit for engine oil in service was below 4% for gasoline engine oil.

Study on Mutual Relation between the Level of Deterioration Influenced by the Changes of Chemical and Physical Properties and the Change of Dielectric Constant for Engine Oil - Diesel Engine Oil (엔진오일의 화학적 및 물리적 변화에 의한 퇴화정도와 유전상수 변화에 관한 상호관계 연구 - 디젤엔진오일)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.290-300
    • /
    • 2006
  • The dielectric constants of used diesel engine oils were obtained at a few temperatures and a frequency. Through analyzing the characteristics of dielectric constant, the related correlation between the changes in dielectric constants of oil and the degree of oil deterioration is going to be found. The dielectric constant was calculated using cross capacitances measured by a sensor tube. As results of the measurement of the fresh engine oil's dielectric constant, it was found that the value of dielectric constant was set down below $60^{\circ}C$ regardless changing frequency. Further, above 6 kHz, the dielectric constant was set down even if temperature was above $100^{\circ}C$. Therefore, for the measurement of used oils, it was selected the frequency of 6 kHz, and the temperature of $80^{\circ}C$ preventing a certain ionic-conduction effects on the measured dielectric constant and the evaporation of a certain fluid mixed with engine oil. Specially, the effects of the mixing fluid like coolant, water and fuel on the fresh engine oil's dielectric constant were studied. It was found that the oil mixed with coolant showed the highest value, next water, and the lowest fuel. As results of the measurement of the used engine oil's dielectric constant, it was found that the possible changed rate of the used engine oil's dielectric constant based on the warning limit for engine oil in service was below 10% for diesel engine oil.

Study of Thermal Ageing Behavior of the Accelerated Thermally Aged Chlorosulfonated Polyethylene for Thermosetting Analysis (열경화성 분석을 위한 가속열화 된 Chlorosulfonated Polyethylene의 경년특성 연구)

  • Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.800-805
    • /
    • 2017
  • The accelerated thermal ageing of CSPE (chlorosulfonated polyethylene) was carried out for 16.82, 50.45, and 84.09 days at $110^{\circ}C$, equivalent to 20, 60, and 100 years of ageing at $50^{\circ}C$ in nuclear power plants, respectively. As the accelerated thermally aged years increase, the insulation resistance and resistivity of the CSPE decrease, and the capacitance, relative permittivity and dissipation factor of those increase at the measured frequency, respectively. As the accelerated thermally aged years and the measured frequency increase, the phase degree of response voltage vs excitation voltage of the CSPE increase but the phase degree of response current vs excitation voltage decrease, respectively. As the accelerated thermally aged years increase, the apparent density, glass transition temperature and the melting temperature of the CSPE increase but the percent elongation and % crystallinity decrease, respectively. The differential temperatures of those are $0.013-0.037^{\circ}C$ and, $0.034-0.061^{\circ}C$ after the AC and DC voltages are applied to CSPE-0y and CSPE-20y, respectively; the differential temperatures of those are $0.011-0.038^{\circ}C$ and $0.002-0.028^{\circ}C$ after the AC and DC voltages are applied to CSPE-60y and CSPE-100y, respectively. The variations in temperature for the AC voltage are higher than those for the DC voltage when an AC voltage is applied to CSPE. It is found that the dielectric loss owing to the dissipation factor($tan{\delta}$) is related to the electric dipole conduction current. It is ascertained that the ionic (electron or hole) leakage current is increased by the partial separation of the branch chain of CSPE polymer as a result of thermal stress due to accelerated thermal ageing.

Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics

  • Woo, Jeong Wook;Baek, SeungBong;Song, Tae Kwon;Lee, Myang Hwan;Rahman, Jamil Ur;Kim, Won-Jeong;Sung, Yeon Soo;Kim, Myong-Ho;Lee, Soonil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.323-330
    • /
    • 2017
  • To understand the defect chemistry of multiferroic $BiFeO_3-based$ systems, we synthesized nonstoichiometric $Bi_{1+x}FeO_{3{\pm}{\delta}}$ ceramics by conventional solid-state reaction method and studied their structural, dielectric and high-temperature charge transport properties. Incorporation of an excess amount of $Bi_2O_3$ lowered the Bi deficiency in $BiFeO_3$. Polarization versus electric field (P-E) hysteresis loop and dielectric properties were found to be improved by the $Bi_2O_3$ addition. To better understand the defect effects on the multiferroic properties, the high temperature equilibrium electrical conductivity was measured under various oxygen partial pressures ($pO_2{^{\prime}}s$). The charge transport behavior was also examined through thermopower measurement. It was found that the oxygen vacancies contribute to high ionic conduction, showing $pO_2$ independency, and the electronic carrier is electron (n-type) in air and Ar gas atmospheres.

Electrochemical Properties of a Zirconia Membrane with a Lanthanum Manganate-Zirconia Composite Electrode and its Oxygen Permeation Characteristics by Applied Currents

  • Park, Ji Young;Jung, Noh Hyun;Jung, Doh Won;Ahn, Sung-Jin;Park, Hee Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.197-204
    • /
    • 2019
  • An electrochemical oxygen permeating membrane (OPM) is fabricated using Zr0.895Sc0.095Ce0.005Gd0.005O2-δ (ScCeGdZ) as the solid electrolyte and aLa0.7Sr0.3MnO3-bScCeGdZ composite (LZab, electrode) as the electrode. The crystal phase of the electrode and the microstructure of the membrane is investigated with X-ray diffraction and scanning electron microscopy. The electrochemical resistance of the membrane is examined using 2-p ac impedance spectroscopy, and LZ55 shows the lowest electrode resistance among LZ82, LZ55 and LZ37. The oxygen permeation is studied with an oxygen permeation cell with a zirconia oxygen sensor. The oxygen flux of the OPM with LZ55 is nearly consistent with the theoretical value calculated from Faraday's Law below a critical current. However, it becomes saturated above the critical current due to the limit of the oxygen ionic conduction of the OPM. The OPM with LZ55 has a very high oxygen permeation flux of ~ 3.5 × 10-6 mol/㎠s in I = 1.4 A/㎠.

Preparation and Electrical Conductivity of $\beta$-$Al_2O_3$ ($\beta$-$Al_2O_3$의 제조 및 전기전도도)

  • 송효일;김응수;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 1986
  • The preparation and electrical conductivity of $\beta$-$Al_2O_3$ are investigated as a function of $Na_2O$ content from the-oretical composition of $\beta$-$Al_2O_3$ to that of $\beta$"-$Al_2O_3$. $\beta$-$Al_2O_3$ $\beta$"$Al_2O_3$$\alpha$-Al2O3 and ${\gamma}$-NaAlO2 phases appear in the calcined powder at 125$0^{\circ}C$ for 2 hours. The majoity phase is $\beta$-$Al_2O_3$ in sintered specimens at 155$0^{\circ}C$ and 1$650^{\circ}C$ for 30 mins respectively and ${\gamma}$-4NaAlO_2$ phase also exists when Na2O content is over 10.39w/o ${\gamma}$-4NaAlO_2$ phase does not affect the grain growth of $\beta$-$Al_2O_3$ in sintering at 155$0^{\circ}C$ but acts as a reactive liquid for the abnormal grain growth of $\beta$-$Al_2O_3$in sintering at 1$650^{\circ}C$ The electrical conduction of $\beta$-$Al_2O_3$is predominated by 4Na^+$ ion. Contribution of ionic con-ductivity to total conductivity is gradually decreased with increasing temperature at given oxygen pressure and to -tal conductivity is increased by positive hole due to interstitial oxygen with increasing oxygen pressure.

  • PDF

Electrochemical Properties of Activated Carbon Supecapacitor Adopting Poly(acrylonitrile) Separator Coated by Polymer-Alkaline Electrolytes (고분자-알칼리 전해질이 코팅된 Poly(acrylonitrile) 분리막을 적용한 활성탄 수퍼커패시터 특성)

  • Kim, Kwang Man;Lee, Young-Gi;Ko, Jang Myoun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.467-472
    • /
    • 2017
  • Alkaline electrolytes consisting of 6 M KOH and polymer (PEO, PVA, and PAAK) are coated on PAN nonwoven fabrics as a separator, and the electrochemical properties of the activated carbon supercapacitor adopting them are investigated in terms of redox behavior, specific capacitance, and interfacial impedance. Although the interaction between polymer and KOH are comparatively inactive in PEO and PVA, PAAK (3 wt.%)-KOH forms a hydrogel phase by active interactions between $COO^-K^+$ in side-chain of PAAK and $K^+OH^-$ from alkaline electrolyte solution, improving ionic conduction of electrolytes and the electrochemical properties of the supercapacitor. As a result, the activated supercapacitor adopting the PAAK-KOH shows the superior specific capacitance of $46.8Fg^{-1}$ at $100mVs^{-1}$.

Improvement of the Resistivity in High Field for the New Piezoelectric Compositions in the Bi(NiaX1-a)O3-PbTiO3(X=Ti,Nb) System (Bi(NiaX1-a)O3-PbTiO3 계 압전 신조성(X-Ti,Nb)의 내전압 특성 향상)

  • Choi, Soon-Mok;Seo, Won-Seon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.220-225
    • /
    • 2008
  • Lead-free ferroelectric ceramics are widely researched today for industrial applications as sensors, actuators and transducers. Since $Pb(Zr_aTi_{1-a})O_3$-(PZT) has high Curie temperature($T_C$), high piezoelectric properties near its morphotropic phase boundary(MPB) composition and small temperature dependence electrical behavior, it has been used to commercial materials for wide temperature range and different application fields. According to the tolerance factor concept, since the $Bi^{3+}$ cation with 12-fold coordinate has a smaller ionic radius than 12-fold coordinate $Pb^{2+}$, most bismuth based perovskites possess a smaller tolerance factor. Therefore, MPBs with a higher $T_C$ may be expected in $Bi(Me^{3+})O_3PbTiO_3$ solid solutions. As in lead based perovskite systems, it is clear that we need to explore more materials in simple or complex bismuth based MPB systems. The objective of this study is to investigate the $Bi(Ni_{1_a}X_a)O_3-PbTiO_3(X=Ti^{4+},\;Nb^{5+})$ perovskite solid-solution. For improving the electronic conduction problem, the magnesium and manganese modified system was also studied.

Variation in Properties of Seawater Flooded and Non-Flooded CSPE (해수범람 전·후의 CSPE 특성변화)

  • Lee, Jeong-U;Kim, In-Yong;Ji, Seong-Hyun;Jeon, Hwang-Hyun;Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1724-1729
    • /
    • 2015
  • Chlorosulfonated polyethylene (CSPE) was not flooded seawater and flooded seawater & freshwater for 5 days, respectively, and these samples are referred to as BSF(before seawater flooding) and ASFF(after seawater & freshwater flooding), respectively. The apparent density, dissipation factor, relative permittivity, melting temperature, dielectric breakdown time and increased time of applied voltage are higher than those of BSF, but the insulating resistance, dielectric strength, percent elongation and glass transition temperature of ASFF are lower than those of BSF. The differential temperature of those is $0.026{\sim}0.028(^{\circ}C)$ after AC and DC voltage is applied to ASFF, respectively, and the differential temperature of those is $0.013{\sim}0.037(^{\circ}C)$ after AC and DC voltage is applied to BSF, respectively. In the case AC and DC voltage is applied to ASFF as well as BSF, the variations in temperature of AC voltage are higher than those of DC voltage. It is investigated that dielectric loss due to dissipation factor ($tan{\delta}$) is related to electric dipole conduction current. It is certain that the ionic (electron or hole) leakage current was increased by conducting ions such as $Na^+$, $Cl^-$, $Mg^{2+}$, $SO_4^{2-}$, $Ca^{2+}$ and $K^+$, those are related to cured atoms of O and S that relatively increased after seawater flooding.