• Title/Summary/Keyword: ion-nitriding

Search Result 78, Processing Time 0.024 seconds

The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys. [II Plasma Ion Nitriding Characteristic] (Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마 이온 질화특성에 미치는 합금원소의 영향 [II플라즈마 이온 질화특성])

  • Son, D.U.;Lee, H.H.;Seong, J.H.;Park, K.S.;Kim, C.K.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.76-81
    • /
    • 2005
  • The effect of micro-pulse plasma nitriding temperature and time on the case thickness, hardness and nitride formation in the surface of Fe-12Cr-22Mn-X alloy with 3% Co and 1% Ti alloys elements investigated. External compound layer and internal diffusion layer was constituted in plasma nitride case of Fe-12Cr-22Mn-X alloys and formed nitride phase such as ${\gamma}'-Fe4N\;and\;{\varepsilon}-Fe2-3N$. Case depth increased with increasing the plasma nitriding temperature and time. Surface hardness of nitrided Fe-12Cr-22Mn-X alloys obtained the above value of Hv 1,600 and case depth obtained the above value of $45{\mu}m$ in Fe-12Cr-22Mn-3Co alloy and $60{\mu}m$ in Fe-12Cr-22Mn-1Ti alloy. Wear-resistance increased with increasing plasma nitriding time and showing the higher value in Fe-12Cr-22Mn-1Ti alloy than Fe-12Cr-22Mn-3Co alloy.

  • PDF

The Effect of Nitriding/DLC Coating on the High Cycle Fatigue Properties of Fe-3.0Ni-0.7Cr-1.4Mn-X Steel (Fe-3.0Ni-0.7Cr-1.4Mn-X강의 고주기피로특성에 미치는 질화/DLC코팅의 영향)

  • Jang, Jae Cheol;Kim, Song-Hee
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.587-594
    • /
    • 2016
  • Various surface treatments and thin film coating processes on the surface of injection die steel have been developed to extend the life. Most of previous studies were mainly focused on investigating the wear and static bonding behavior of thin films. In this study complex surface treatments of DLC coating combined with ion nitriding were applied to increase fatigue life and wear resistance. Ion nitriding, DLC coating, and DLC coating following nitriding on the surface of Fe-3.0Ni-0.7Cr-1.4Mn-X steel were investigated to uncover the beneficial effect which is applicable to injection die. The effect of various surface treatments and coating conditions on high cycle fatigue resistance was studied. Surface morphology change during fatigue tests were observed with AFM. Fatigue life of the die steel increased by 10 to 1,000 times at the various level of stress amplitudes in the condition of DLC coating following the ion nitriding for 3 hrs comparing with the only DLC coated condition.

A Study on the Corrosion Fatigue Characteristics of Ion-nitrided SCM4 Steel in Rotationg Bending (이온질화처리한 SCM4 강의 회전굽힘 부식피로 특성에 관한 연구)

  • Lee, Du-Yong;Woo, Chang-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.1
    • /
    • pp.75-84
    • /
    • 1989
  • This paper deals with the effect of $N_2$ and $H_2$gas mixture ratio and ion-nitriding time in the corrosion fatigue fracture behavior of ion-nitrided SCM4 steel with notch subject to rotary bending stress. The specimens were treated rapid water cooling after ion-nitriding at $500^{\circ}C$ Torr for 1 hour and 3 hours in gas mixtures of 80% $N_2$and 50% $N_2$. The fatigue limit and the fracture strength of corrosion fatigue depended on $N_2$gas quantity and ion-nitriding time. The ion-nitrided specimens showed about 88 .approx. 158% increase in the fracture strength of corrosion fatigue in $10^6$ cycles than non-nitrided specimens. The corrosion failure is due to corrosion pitting of the surface, and the propargation of cracks started at the surface into the core.

  • PDF

Study on the Application of Ion-nitrided Treatment to Improve the Mechanical Properties of Carbon Steel (회소강의 기계적 성질을 개선하기 위한 이온질화 처리의 응용에 관한 연구)

  • 강명순;윤종학;이원평
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.28-33
    • /
    • 1987
  • This thesis is to improve the mechanical properties of carbon steel by the ion-nitriding, and post-heat treatment. The structures of ion-nitrided SM45C steel were changed to martensite by quenching from 730.deg. C and 800.deg. C. And then a few of the quenched specimens was tempered at 200.deg. C for 120 min. The emphasis in this study is focussed on Comparison of hardness and fatigue strength with the ion-nitrided steel. The results obtained are summerized as follows. 1. To improve the hardness and fatigue strength of ion-nitrided steels, it is effective to under take diffusion treatment for a short time at the austenite temperature(800.deg. C). 2. If ion-nitrided steel is heated for a long time at high temperature, de-nitriding occure. 3. The quenching treatment after nitriding on the carbon steel is necessary to improve the mechanical properties of the steels.

  • PDF

Tribological Characteristics of Plasma Ion Nitriding Surface Treatment (플라즈마 이온 질화 표면처리의 윤활 및 마모 특성)

  • 좌성훈;김선교;박주승
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.60-70
    • /
    • 1996
  • Scuffing and severe wear of the highly stressed sliding components have been very critical problems in the development of a rotary compressor. In order to improve durability and reliability of the compressor, plasma ion-nitriding was applied on the shaft and the vane surface. The effects of different treatment conditions on the mechanical and tribological properties of the ion-nitrided surfaces were investigated. Ion-nitrided surfaces showed better tribological performances than untreated surfaces. The best wear performance was observed when the shaft was nitrided in the condition of 450$\circ$C, 7 hours, $N_2:H_2=1:4$ gas mixture by forming a ductile nitrided layer which has $\gamma'$ phase microstructure. As nitrogen gas pressure increased, $\varepsilon$ phase layer was formed. This hard phase layer was observed to be more beneficial for the vane in reducing friction and wear.

Characterization of DLC Coated Surface of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X Steel (DLC 코팅한 Fe-3.0%Ni-0.7%Cr-1.4%Mn-X강의 표면특성평가)

  • Jang, Jaecheol;Kim, Song-Hee
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The various surface treated conditions of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X steel such as as-received, ion nitriding, DLC coated, DLC coated after nitriding for 3 hrs and 6 hrs were investigated to evaluate the beneficial effect for plastic mold steel. Micro Vickers hardness tester was used to estimate nitriding depth from the hardness profile and to measure hardness on the surface. Elastic modulus and residual stress were measured by a nanoindentator. Scratch test and SP (small ball punch test) were utilized to assess the adhesive strength of DLC coating. The depth of nitriding layer was measured as $50{\mu}m$ for the condition of 3 hrs nitriding and $90{\mu}m$ for that of 6 hrs nitriding. Hardness, elastic modulus, residual stress of DLC coating were 20.37 GPa, 162.78 GPa and -1456 MPa respectively. Residual stress on the surface of DLC coating after nitriding could increase to -3914 MPa by introducing nitriding before DLC coating. During the 'Ball-On-Disc' test ${\gamma}^{\prime}$ particles pulled out from the surface of nitrized layer tend to enhance abrasive wear mode since the fraction of ${\gamma}^{\prime}$ (Fe4N) in ion-nitrized layer is known to increases with nitriding time. Thus the specific wear rate of the nitriding layer increased. Comparing with nitriding the specific wear rate in work piece disc as well as ball decreased prominently in DLC coating due to the remarkable reduction in friction coefficient.

Study on the Fatigue Behavior of Ion-Nitrided SW3 Coil Spring (이온 窒化된 SW3코일 스프링의 疲勞擧動에 관한 硏究)

  • 염영하;장성대
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.355-360
    • /
    • 1983
  • This paper deals with fatigue behavior of ion-nitrided coil spring. It is found that fatigue limit can be significantly increased by ion-nitriding. Ion-nitribed specimen which is treated at 550.deg. C for 5 hours improves in the fatigue limit by 30 percent in comparison with that of non-nitrided specimen. On the other hand, the value of spring constant K has nothing to do with nitriding time and temperature in this experimental range. Besides fatigue behavior, the following effects are discussed such as compound layer, diffusion layer, hardness distribution and their relations.

High Temperature Tribological Behaviors of Nitride Based Ceramic Coatings (나이트라이드계 세라믹 코팅의 고온 마모, 마찰거동)

  • 김장엽;임대순;이상로;백운승
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.83-86
    • /
    • 1996
  • In this study, CrN, TiN and TiN + CrN coatings have treated onto the steel substrates by ion plating to improve their tribological behaviors. Some of the specimens were ion nitriding treated to study the effect of ion nitriding on wear behavior. The wear tests were performed with these specimens by ball-onplate type and disc-on-plate type wear tester. It was demonstrated that ion nitriding treatment improve wear resistance of the coatings. The results of high temperature wear tests indicated that the specimens coated with CrN were exhibited the better wear resistance properties than the specimens with TiN coatings

  • PDF

Influence of Ion-Nitriding on Dynamic Fracture Toughness in Cr Alloy Steels (크롬합금강의 동적파괴인성에 미치는 이온실화처리의 영향)

  • 오세욱;윤한기;장래웅;김기술
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.150-162
    • /
    • 1988
  • The dynamic fracture toughness, $K_{Id}$,is measured in the heat-treated and ion-nitrided Cr-Mo, Ni-Cr-Mo steel using standard and Precracked Charpy specimens an imstrumented impact machine. The value of $K_{Id}$and both the energy of initiate fracture, and the total energy of fracture. Since the $K_{Id}$values of the precraked impact specimens are in accord with their theoretical ones, this testing method is sufficently practical. The effect of ion-nitriding are found to be larger than the heat-treaded specimen.

  • PDF

Computer Simulation for the Growth of Cr-nitride Formed on Electroplated Cr during ion-Nitriding (이온 질화에 의해 크롬 도금 층 위에 형성된 크롬 질화물의 성장에 관한 전산 모사)

  • 엄지용;이병주;남기석;권식철;권혁상
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.231-239
    • /
    • 2001
  • The structure and composition of Cr-nitrides formed on an electroplated hard Cr layer during an ionnitriding process was analyzed, and the growth kinetics of the Cr-nitrides was examined as a function of the ion-nitriding temperature and time in order to establish a computer simulation model prediction the growth behavior of the Cr-nitride layer. The Cr-nitrides formed during the ion-nitriding at $550~770^{\circ}C$ were composed of outer CrN and inner $Cr_2$N layers. A nitrogen diffusion model in the multi-layer based on fixed grid FDM (Finite Difference Method) was applied to simulate the growth kinetics of Cr-nitride layers. By measuring the thickness of each Cr-nitride layer as a function of the ion-nitriding temperature and time, the activation energy for growth of each Cr-nitride was determined; 82.26 KJ/mol for CrN and 83.36 Kj/mol for $Cr_2$N. Further, the nitrogen diffusion constant was determined in each layer; $9.70$\times$10^{-12}$ /$m^2$/s in CrN and $2.46$\times$10^{-12}$ $m^2$/s in $Cr_2$N. The simulation on the growth kinetics of Cr-nitride layers was in good agreements with the experimental results at 550~72$0^{\circ}C$.

  • PDF