• Title/Summary/Keyword: ion-binding

Search Result 462, Processing Time 0.027 seconds

Metal Sequestering by a Poly(ethylenimine)-Sephadex G-25 Conjugate Containing 2,2'-Dihydroxyazobenzene

  • Gwan, Won Jong;Yu, Chang Eun;Jang, Won Seok;No, Yeong Seok;Seo, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.393-400
    • /
    • 2000
  • 2,2¢-Dihydroxyazobenzene (DHAB) was attached to poly(ethylenimine) (PEI) to obtain DHAB-PEI. Spectral titration revealed that uranyl, Fe(III), Cu(II), and Zn(II) ion form 1 : 1-type complexes with DHAB attached to PEI. Formation constants for the metal complexes formed by the DHAB moieties of DHAB-PEI were mea-sured by using various competing ligands. The results indicated thatthe concentrations of uranyl, Fe(III), and Cu(II) ions can be reduced to 10 -16 -10 -23 M at p 8 with DHAB-PEI when the concentration of the DHAB moiety is 1 residue M. By using cyanuric chloride as the coupling reagent, DHAB-PEI was immobilized on Sephadex G-25 resin to obtain DHAB-PEI-Seph. Binding of uranyl,Fe(III), Cu(II), and Zn(II) ion by DHAB-PEI-Seph was characterized by using competing ligands. A new method has been developed for characteriza-tion of metal sequestering ability of a chelating resin. Formation constants and metal-binding capacity of two sets of binding sites on the resin were estimated for each metal ion. DHAB-PI-Seph was applied to recovery of metals such as uranium,Fe, Cu, Zn, Pb, V, Mn, and W from seawater. The uranium recovery from seawaterby DHAB-PEI-Seph does not meet the criterion for economical feasibility partlydue to interference by Fe and Zn ions. The seawater used in the experiment was contaminated by Fe and Zn and, therefore, the efficiency of uranium extractionfrom seawater with DHAB-PEI-Seph could be improved if the experiment is carried out in a cleaner sea.

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1996-2000
    • /
    • 2009
  • Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.

Synthesis of Tetracyclic Pyrido[2,3-b]azepine Derivatives as Analogues of Mirtazapine via N-Acyliminium Ion Cyclization

  • Lee, Jae-Yeol;Bang, Sung-Hun;Lee, Sook-Ja;Song, Yun-Seon;Jin, Chang-Bae;Park, Ho-Koon;Lee, Yong-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1623-1628
    • /
    • 2002
  • Tetracyclic pyrido[2,3-b]azepine derivatives 4a-d and 4f as analogues of mirtazapine were synthesized via N-acyliminium ion cyclization by using aromatic rings such as benzene and thiophene ring as a ${\pi}-nucleophile$, and evaluated for the binding affinity for ${\alpha}2-adrenoceptor$. Among tested compounds, 2,3,9,13b-tetrahydro-1H-benzo[f]pyrrolo[2,1-a]pyrido[2,3-c]azepine (4a) was the most potent (Ki = 0.26 ${\mu}M)$ but showed about 3-fold less binding affinity than mirtazapine (Ki = 0.08 ${\mu}M)$ for a2-adrenoceptor.

Effect of saltss on the entrapment of calf thymus DNA into liposomes

  • Kim, Chong-Kook;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.110-114
    • /
    • 1987
  • To correlate the conformational changes of DNA (Calf Thymus) with entrapment of DNA into liposomes, the effect of ions ($Na^+$, $Mg^{++}$on the entrapment of calf thymus DNA into liposomes was investigated. The effect of divalent ion ($Mg^{++}$ on the structural changes of DNA indicated by decrease of observed ellipticity at 274 nm and nonspecific binding of DNA to lipid bilayers was greater than monovalent ion ($\Na^+$). But the efficiency of DNA encapsulated was not altered. These results show that entrapment of DNA into liposomes is not due to nonspecific binding and structural changes because of electrostatic forces but to mechanical capture of DNA by the internal aqueous space of liposomes although divalent ion contributes large structural changes and more nonspecific association of DNA with liposomes due to strong charges.

  • PDF

Synthesis of Chemosensor Based on Pyrene and Study for Its Sensing Properties Toward Fluoride Ion

  • Kim, Hyungjoo;Li, Xiaochuan;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.153-158
    • /
    • 2013
  • In this study, pyrene based chemosensor was synthesized by two step reaction. The chemosensor showed that high selectivity toward fluoride in DMSO. The fluorescence intensity was drastically increased by binding between chemosensor and fluoride ion. Absorption and fluorescence spectra were obtained by UV-Vis spectrometer and fluorescence spectrophotometer. The binding ratio between chemosensor and fluoride ion was also investigated by job's plot method and Benesi-Hildebrand plot. The HOMO/LUMO energy levels and electron distribution were calculated and simulated by Material studio 6.0 Package.

Isolation of a Calcium-binding Peptide from Chlorella Protein Hydrolysates

  • Jeon, So-Jeong;Lee, Ji-Hye;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.282-286
    • /
    • 2010
  • To isolate a calcium-binding peptide from chlorella protein hydrolysates, chlorella protein was extracted and hydrolyzed using Flavourzyme, a commercial protease. The degree of hydrolysis and calcium-binding capacity were determined using trinitrobenzenesulfonic acid and orthophenanthroline methods, respectively. The enzymatic hydrolysis of chlorella protein for 6 hr was sufficient for the preparation of chlorella protein hydrolysates. The hydrolysates of chlorella protein were then ultra-filtered under 5 kDa as molecular weight. The membrane-filtered solution was fractionated using ion exchange, reverse phase, normal phase chromatography, and fast protein liquid chromatography to identify a calcium-binding peptide. The purified calcium-binding peptide had a calcium binding activity of 0.166 mM and was determined to be 700.48 Da as molecular weight, and partially identified as a peptide containing Asn-Ser-Gly-Cys based on liquid chromatography/electrospray ionization tandem mass spectrum.

Nitrobenzene Functionalized Hexahomotrioxacalix[3]arene

  • Kang, Jong-Min;Cheong, Na-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.7
    • /
    • pp.995-997
    • /
    • 2002
  • The synthesis and characterization of a nitrobenzene modified hexahomotrioxacalix[3]arene 1 are described.When calixarene 1 bound with ammonium ions carrying fluorescence group, the fluorescence of ammonium ions were effectively quenched and chang e of emission intensity provided the information of ammonium ion binding events to the calixarene 1.

The Hydrogen Binding Property Study by Density Functional Theory for Zr, V, Fe and Al (밀도 함수를 이용한 지르코니움, 바나듐, 철과 수소와의 반응성 연구)

  • Park, Taesung;Lee, Taeckhong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.602-608
    • /
    • 2014
  • The sequence of bond overlap population of metal hydrogen binding is in Al-H > Fe-H > Zr-H > V-H. This results shows the binding energy of Al-H is the biggest in this metals (Al, Fe, Zr, and V) and hydrogen interaction. The Vanadium-hydrogen binding shows the weakest binding energy compared to other metals and it causes easy hydrogen desorption from the corresponding metals. The net charge of Al-H show the biggest value of 0.2248 and the severe localizations of electrons around aluminum and imply strongest covalent binding nature in these metals. This study is applicable to the purification of hydrogen in other bulk gas.