Browse > Article
http://dx.doi.org/10.5012/jkcs.2018.62.4.324

Study on the Effect of Curcumin on the Binding Interaction between DNA and Ethidium Ion with Fluorescence Anisotropy  

Lee, Seongkyung (Department of Biochemistry, Chungnam National University)
Huh, Sungho (Department of Biochemistry, Chungnam National University)
Publication Information
Keywords
Fluorescence anisotropy; Quenching; Ethidium bromide; Curcumin; Intercalation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fried, M. G. Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 1989, 10, 366.   DOI
2 Carey, J. Gel retardation. Methods Enzymol. 1991, 208, 103.
3 Haq, I.; Ladbury, J. E.; Chowdhry, B. Z.; Jenkins, T. C.; Chaires, J. B. Specific binding of hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: calorimetric and spectroscopic studies. J. Mol. Biol. 1997, 271, 244.   DOI
4 Hu, S. H.; Weisz, K.; James, T. L.; Shafer, R. H. H-NMR studies on d(GCTTAAGC)2 and its complex with berenil. Eur. J. Biochem. 1992, 204, 31.   DOI
5 Baranovsky, S. F.; Bolotin, P. A.; Evstigneev, M. P.; Chernyshev, D. N. Interaction of ethidium bromide and caffeine with DNA in aqueous solution. J. Appl. Spectrosc. 2009, 76, 132.   DOI
6 Feigon, J.; Denny, W. A.; Leupin, W.; Kearns, D. R. Interactions of antitumor drugs with natural DNA: $^1H$ NMR study of binding mode and kinetics. J. Med. Chem. 1984, 27, 450.   DOI
7 Conte, M. R.; Jenkins, T. C.; Lane, A. N. Interaction of minor-groove-binding diamidine ligands with an asymmetric DNA duplex. NMR and molecular modelling studies. Eur. J. Biochem. FEBS 1995, 229, 433.   DOI
8 Szabo, A.; Stolz, L.; Granzow, R. Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr. Opin. Struct. Biol. 1995, 5, 699.   DOI
9 Larsen, R. W.; Jasuja, R.; Hetzler, R. K.; Muraoka, P. T.; Andrada, V. G.; Jameson, D. M. Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators. Biophys. J. 1996, 70, 443.   DOI
10 Lakowicz, J. R. Principles of Fluorescence Spectroscopy; 3rd ed.; Springer Science & Business Media: Boston, MA, 2006.
11 Lee, S.; Huh, S. Measuring Fluorescence Anisotropy as One of Very Useful Analytical Methods to Obtain Detailed Information of the Complex Binding Interaction. Bull. Korean Chem. Soc. 2017, 38, 406.   DOI
12 Ameloot, M.; vandeVen, M.; Acuna, A. U.; Valeur, B. Fluorescence anisotropy measurements in solution: Methods and reference materials (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 589.   DOI
13 Sharma, R. A.; Gescher, A. J.; Steward, W. P. Curcumin: The story so far. Eur. J. Cancer 2005, 41, 1955.   DOI
14 Koonammackal, M. V.; Nellipparambil, U. V.; Sudarsanakumar, C. Molecular dynamics simulations and binding free energy analysis of DNA minor groove complexes of curcumin. J. Mol. Model. 2011, 17, 2805.   DOI
15 Nafisi, S.; Adelzadeh, M.; Norouzi, Z.; Sarbolouki, M. N. Curcumin binding to DNA and RNA. DNA Cell Biol. 2009, 28, 201.   DOI
16 Burgos-Moron, E.; Calderon-Montano, J. M.; Salvador, J.; Robles, A.; Lopez-Lazaro, M. The dark side of curcumin. Int. J. Cancer 2010, 126, 1771.
17 Li, X. L.; Hu, Y. J.; Mi, R.; Li, X. Y.; Li, P. Q.; Ouyang, Y. Spectroscopic exploring the affinities, characteristics, and mode of binding interaction of curcumin with DNA. Mol. Biol. Rep. 2013, 40, 4405.   DOI
18 Kurien, B. T.; Dillon, S. P.; Dorri, Y.; D'Souza, A.; Scofield, R. H. Curcumin does not bind or intercalate into DNA and a note on the gray side of curcumin. Int. J. Cancer 2011, 128, 242.   DOI