• Title/Summary/Keyword: ion transfer resistance

Search Result 52, Processing Time 0.032 seconds

THE TRANSFER OF CHLORIDE ION ACROSS ANION EXCHANGE MEMBRANE

  • Yu, Zemu;Wang, Hanming;Wang, Erkang
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.597-601
    • /
    • 1995
  • The transfer of chloride ion across an anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In CV experiment, when the size of the hole in membrane was much smaller than the distance between membrane holes, the Cl anion transfer showed steady state voltammetric behavior. Each hole in membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in membrane was large or the distance between membrane holes was small, the CV curve of the Cl anion transfer across membrane showed peak shape, which attributed to linear diffusion. In ac impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low de bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing dc bias and only one semicircle was observed at higher dc bias. The parameters related to kinetic and membrane properties were discussed.

  • PDF

Characteristics of Contact resistivity on RTP annealing temperature and time after Plasma ion implant (플라즈마 이온주입 후 RTP 열처리 온도와 시간에 따른 접촉저항 특성)

  • Choi, Jang-Hun;Do, Seung-Woo;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.5-6
    • /
    • 2009
  • In this paper, plasma ion implant is performed with $PH_3$ gas diluted by helium gas on P-type Si wafer (100). Spike Rapid Thermal Processing(RTP) annealing performed for 30~60 sec from $800\;^{\circ}C$ to $1000\;^{\circ}C$ in $N_2+O_2$ ambient. Crystalline defect is analyzed by Transmission Electron Microscope(TEM) and Double crystal X-ray Diffraction(DXRD). Contact resistivity($\rho c$), contact resistance(Rc) and sheet resistance(Rs) are analyzed by measuring Transfer Length Method(TLM) using 4155C analysis. As annealing temperature increase, Rs decrease and ${\rho}c$ and Rc increase at temperature higher than $850\;^{\circ}C$. We achieve low Rs, ${\rho}c$ and Rc with Plasma ion implant and spike RTP.

  • PDF

Repassivation Characteristics of Fe-Cr Steels Using the Abrading Electrode Technique in Aqueous 0.1M $Na_2SO_4+ NaCl$ Solutions (0.1M $Na_2SO_4+ NaCl$ 수용액에서 마멸 전극 기법을 이용한 Fe-Cr강의 재부동태 특성)

  • Ham Dong Ho;Lee Jae Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.195-201
    • /
    • 1999
  • The repassivation characteristics of Fe-Cr steels in deaerated 0.1 M $Na_2SO_4$ solution have been investigated with the variation of Cr content, applied potential and Cl- concentration. In the absence of chloride ion, abrading electrode test showed that, slope -n, of log i=k -n log t, a parameter of repassivation rate, approached to -1, regardless of Cr content but as Cr content increased, repassivation current density decreases with increasing Cr content. A.C. Impedance spectroscopy showed that the charge transfer resistance of passive film became higher as Cr content and applied potential increased. However, in the presence of chloride ion, it was observed that chloride ion suppressed the passive film formation, whose effect became greater with increasing applied potential.

Characterizations of Commercial Bipolar Membranes for Efficient Electrochemical LiOH Production (효율적인 전기화학적 LiOH 생산을 위한 상용 바이폴라막 특성 분석)

  • Song, Hyeon-Bee;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.357-365
    • /
    • 2022
  • Recently, as the demand for secondary batteries for electric vehicles has rapidly increased, the efficient production of lithium compounds is attracting great attention. Bipolar membrane electrodialysis (BPED) is known as an eco-friendly, economical, and efficient electrochemical lithium compound production process. Since the efficiency of the BPED depends on the performance of the bipolar membrane (BPM), the selection of the BPM is very important. In this study, the characteristics of BPMs suitable for the BPED for electrochemical LiOH production were derived by comparative analyses of BP-1E (Astom) and FBM (Fumatech), which are the most widely used commercial BPMs in the world. Through systematical evaluation, it was confirmed that reducing membrane ion transfer resistance and co-ion leakage among the characteristics of BPM is the most important, and BP-1E has better performance than FBM in this respect.

On eliminating electrochemical impedance signal noise using Li metal in a non-aqueous electrolyte for Li ion secondary batteries

  • Park, Chul-Wan
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.180-183
    • /
    • 2011
  • Li metal is accepted as a good counter electrode for electrochemical impedance spectroscopy (EIS) as the active material in Li-ion and Li-ion polymer batteries. We examined the existence of signal noise from a Li-metal counter quantitatively as a preliminary study. We suggest an electrochemical cell with one switchable electrode to obtain the exact impedance signal of active materials. To verify the effectiveness of the switchable electrode, EIS measurements of the solid electrolyte interphase (SEI) before severe $Li^+$ intercalation to SFG6 graphite (at > ca. 0.25 V vs. Li/$Li^+$) were taken. As a result, the EIS spectra without the signal of Li metal were obtained and analyzed successfully for the following parameters i) $Li^+$ conduction in the electrolyte, ii) the geometric resistance and constant phase element of the electrode (insensitive to the voltage), iii) the interfacial behavior of the SEI related to the $Li^+$ transfer and residence throughout the near-surface (sensitive to voltage), and iv) the term reflecting the differential limiting capacitance of $Li^+$ in the graphite lattice.

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

Enhanced Desalination Performance through Nafion-coated Cathode in Capacitive Deionization (축전식 탈염에서 나피온 코팅 음극을 통한 담수화 성능 향상)

  • Kim, Jieun;Jung, Seongwoo;Kim, Jinwook;Kim, Jaehwan;Kwak, Rhokyun
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.13-20
    • /
    • 2022
  • An effective capacitive deionization process termed membrane capacitive deionization (MCDI) is newly designed and experimentally tested for seawater desalination. By preventing co-ions to be expelled, MCDI can improve the ion removal performance, but there is a trade-off between blocking co-ion transfer and increasing contact resistance. The conventional MCDI uses 2D-shaped films which increase contact resistance and reduce desalination performance in the trade-off. In this paper, with the 3-D shape of Nafion coated activated carbon cloth, the mentioned problems are expected to be solved making the desalination performance better. We visualized ion concentration and fluid flows with half-MCDI cell that can measure only efficiency of cathode. We found the optimal number of coatings which have the better efficiency than CMX, commercial cation exchange membrane in fixed current conditions of 100uA.

Study on the Cycling Performances of Lithium-Ion Polymer Cells Containing Polymerizable Additives

  • Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.319-322
    • /
    • 2009
  • Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of polymerizable additive (3,4-ethylenedioxythiophene, thiophene, biphenyl). The organic additives were electrochemically oxidized to form conductive polymer films on the electrode at high potential. With the gel polymer electrolytes containing different organic additive, lithium-ion polymer cells composed of carbon anode and LiCo$O_2$ cathode were assembled and their cycling performances were evaluated. Adding small amounts of thiophene or 3,4-ethylenedioxythiophene to the gel polymer electrolyte was found to reduce the charge transfer resistance in the cell and it thus exhibited less capacity fading and better high rate performance.

A New Way to Prepare MoO3/C as Anode of Lithium ion Battery for Enhancing the Electrochemical Performance at Room Temperature

  • Yu, Zhian;Jiang, Hongying;Gu, Dawei;Li, Jishu;Wang, Lei;Shen, Linjiang
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.170-178
    • /
    • 2016
  • Composited molybdenum oxide and amorphous carbon (MoO3/C) as anode material for lithium ion batteries has been successfully synthesized by calcining polyaniline (PANI) doped with ammonium heptamolybdate tetrahydrate (AMo). The as prepared electrode material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM). The electrochemical performance of the anode was investigated by galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The MoO3/C shows higher specific capacity, better cyclic performance and rate performance than pristine MoO3 at room temperature. The electrochemical of MoO3/C properties at various temperatures were also investigated. At elevated temperature, MoO3/C exhibited higher specific capacity but suffered rapidly declines. While at low temperature, the electrochemical performance was mainly limited by the low kinetics of lithium ion diffusion and the high charge transfer resistance.

Resistance Distribution in Thin Film Type SFCL Elements with Shunt Layers of Different Thicknes

  • Kim, Hye-Rim;Hyun, Ok-Bae;Lee, Seung-Yup;Yu, Kwon-Kyu;Kim, In-Seon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.41-45
    • /
    • 2003
  • Resistance distribution in thin film type SFCL elements of different shunt layer thickness was investigated. The 300 nm thick film of 2 inch diameter was coated with a gold layer and patterned into 2 mm wide meander lines. The shunt layer thickness was varied by ion milling the shunt layer with Ar ions, and also by having the shunt layer grown in different thickness. The SFCL element was subjected to simulated AC fault current for measurements. It was immersed in liquid nitrogenduring the experiment. The resistance distribution was not affected by the shunt layer thickness at applied voltages that brought the temperature of the elements to similar values. This result could be explained with the concept of heat transfer from the film to the surroundings. The resistance distribution was independent of the shunt layer thickness because thick sapphire substrates of high thermal conductivity dominated the thermal conductance of the elements.