Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.5.357

Characterizations of Commercial Bipolar Membranes for Efficient Electrochemical LiOH Production  

Song, Hyeon-Bee (Department of Green Chemical Engineering, Sangmyung University)
Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
Publication Information
Membrane Journal / v.32, no.5, 2022 , pp. 357-365 More about this Journal
Abstract
Recently, as the demand for secondary batteries for electric vehicles has rapidly increased, the efficient production of lithium compounds is attracting great attention. Bipolar membrane electrodialysis (BPED) is known as an eco-friendly, economical, and efficient electrochemical lithium compound production process. Since the efficiency of the BPED depends on the performance of the bipolar membrane (BPM), the selection of the BPM is very important. In this study, the characteristics of BPMs suitable for the BPED for electrochemical LiOH production were derived by comparative analyses of BP-1E (Astom) and FBM (Fumatech), which are the most widely used commercial BPMs in the world. Through systematical evaluation, it was confirmed that reducing membrane ion transfer resistance and co-ion leakage among the characteristics of BPM is the most important, and BP-1E has better performance than FBM in this respect.
Keywords
lithium compounds; bipolar membrane electrodialysis; bipolar membrane; ion transfer resistance; co-ion leakage;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Bunani, K. Yoshizuka, S. Nishihaman, M. Arda, and N. Kabay, "Application of bipolar membrane electrodialysis (BMED) for simultaneous separation and recovery of boron and lithium from aqueous solutions", Desalination, 424, 37-44 (2017).   DOI
2 X. Li, Y. Mo, W. Qing, S. Shao, C. Y. Tang, and J. Li, "Membrane-based technologies for lithium recovery from water lithium resources: A review", J. Membr. Sci., 591, 117317 (2019).   DOI
3 B. S. Kim, S. C. Park, D.-H. Kim, G. H. Moon, J. G. Oh, J. Jang, M.-S. Kang, K. B. Yoon, and Y. S. Kang, "Bipolar membranes to promote formation of tight ice-like water for efficient and sustainable water splitting", Small, 16, 2002641 (2020).   DOI
4 H.-B. Song, H.-N. Moon, and M.-S. Kang, "Preparation and electrochemical applications of pore-filled ion-exchange membranes with well-adjusted cross-linking degrees: Part II. Reverse electrodialysis", Membr. J., 27, 441-448 (2017).   DOI
5 K. Venugopal and S. Dharmalingam, "Composite ion exchange membrane based electrodialysis cell for desalination as well as acid and alkali productions", Int. J. Trend Res. Dev., 3, 631-640 (2016).
6 Xi. Zeng, M. Li, D. A. El-Hady, W. Alshitari, A. S. Al-Bogami, J. Lu, and K. Amine, "Commercialization of lithium battery technologies for electric vehicles", Adv. Energy Mater., 9, 1900161 (2019).   DOI
7 B. Swain, "Recovery and recycling of lithium: a review", Sep. Pur. Technol., 172, 388-403 (2017).   DOI
8 S. H. Park, J. H. Kim, S. J. Moon, J. T. Jung, H. H. Wang, A. Ali, C. A. Quist-Jensen, F. Macedonio, E. Drioli, and Y. M. Lee, "Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration", J. Membr. Sci., 598, 117683 (2020).   DOI
9 L. T. Peiro, G. V. Mendez, and R. U. Ayres, "Lithium: Sources, production, uses, and recovery outlook", JOM, 65, 986-996 (2013).   DOI
10 C. A. Quist-Jensen, A. Ali, E. Drioli, and F. Macedonio, "Perspectives on mining from sea and other alternative strategies for minerals and water recovery-the development of novel membrane operations", J. Taiwan Inst. Chem. Eng., 94, 129-134 (2019).   DOI
11 J.-M. A. Juve, F. M. S. Christensen, Y. Wang, and Z. Wei, "Electrodialysis for metal removal and recovery: A review", Chem. Eng. J., 435, 134857 (2022).   DOI
12 J. R. Davis, Y. Chen, J. C. Baygents, and J. Farrell, "Production of acids and bases for ion exchange regeneration from dilute salt solutions using bipolar membrane electrodialysis", ACS Sustainable Chem. Eng., 3, 2337-2342 (2015).   DOI
13 C. Jiang, Y. Wang, Q. Wang, H. Feng, and T. Xu, "Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM)", Ind. Eng. Chem. Res., 53, 6103 -6112 (2014).   DOI
14 Y. Zhao, J. Pan, H. Yu, D. Yang, J. Li, L. Zhuang, Z. Shao, and B. Yi, "Quaternary ammonia polysulfone-PTFE composite alkaline anion exchange membrane for fuel cells application", Int. J. Hydrog. Energy, 38, 1983-1987 (2013).   DOI
15 R. Parnamae, S. Mareev, V. Nikonenko, S. Melnikov, N. Sheldeshov, V. Zabolotskii, H. V. M. Hamelers, and M. Tedesco, "Bipolar membranes: A review on principles, latest developments, and applications", J. Membr. Sci., 617, 118538 (2021).   DOI
16 Z. Yan, L. Zhu, Y. C. Li, R. J. Wycisk, P. N. Pintauro, M. A. Hickner, and T. E. Mallouk, "The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes", Energy Environ. Sci., 11, 2235-2245 (2016).
17 X. Chen, X. Ruan, S. E. Kentish, G. Li, T. Xu, and G. Q. Chen, "Production of lithium hydroxide by electrodialysis with bipolar membranes", Sep. Pur. Technol., 274, 119026 (2021).   DOI
18 J.-H. Kim, S. Ryu, and S.-H. Moon, "The fabrication of ion exchange membrane and its application to energy systems, Membr. J., 30, 79-96 (2020).   DOI
19 Y.-J. Choi, J.-M. Park, K.-H. Yeon, and S.-H. Moon, "Electrochemical characterization of poly(vinyl alcohol)/formyl methyl pyridinium (PVA-FP) anion-exchange membranes", J. Membr. Sci., 250, 295-304 (2005).   DOI
20 H. Strathmann, J. J. Krol, H. J. Rapp, and G. Eigenberger, "Limiting current density and water dissociation in bipolar membranes", J. Membr. Sci., 125, 123-142 (1997).   DOI