• Title/Summary/Keyword: ion source

Search Result 967, Processing Time 0.263 seconds

The Effect of Annealing Methods on Dopant Activation and Damage Recovery of Phosphorous ion Shower Doped Poly-Si (다결정 실리콘 박막 위에 P이온 샤워 도핑 후 열처리 방법에 따르는 도펀트 활성화 및 결함 회복에 관한 효과)

  • Kim, Dong-Min;Ro, Jae-Sang;Lee, Ki-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • Ion shower doping with a main ion source of $P_2H_x$ using a source gas mixture of $PH_3/H_2$ was conducted on excimer-laser-annealed (ELA) poly-Si.The crystallinity of the as-implanted samples was measured using a UV-transmittance. The measured value using UV-transmittance was found to correlate well with the one measured using Raman Spectroscopy. The sheet resistance decreases as the acceleration voltage increases from 1kV to 15kV at the moderate doping conditions. It, however, increases as the acceleration voltage increases under the severe doping conditions. The reduction in carrier concentration due to electron trapping at uncured damage after activation annealing seems to be responsible for the rise in sheet resistance. Three different annealing methods were investigated in terms of dopant-activation and damage-recovery, such as furnace annealing, excimer laser annealing, and rapid thermal annealing, respectively.

Construction of Rb Charge Exchange Cell and Characteristic Experiment for He- Ion Production (He음이온 생성을 위한 Rb전하교환기의 제작 및 특성실험)

  • Hee-Seock LEE;Jun-Gyo BAK;Hae-iLL BAK
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.420-425
    • /
    • 1991
  • The Rb charge exchange cell is constructed as the He- ion source of the SNU 1.5- MV Tandem Van do Graaff accelerator. The characteristic experiment is carried out in order to determine the optimum operational conditions of the cell. The $He^{+}$ ion beam with the energy of 1~10 keV, extracted from the duoplasmatron ion source, is passed through the Rb vapor to become He- ions by the two step charge exchange reaction, i.e., $He^{+}\;+\;Rb\;{\rightarrow}\;He^{\circ\ast}\;+\;Rb^{+}\;and\;He^{\circ\ast}\;+\;Rb\;{\rightarrow}\;He^{-}\;+\;Rb^{+}$. From the experimental results, it is found that the maximum fractional yield of $He^{-}$ ions is produced at He+ ion energy of 7 keV. The optimum temperatures of the oven and the canal are determined to be $370\;^{\circ}C{\;}and{\;}95^{\circ}C$ respectively. Under the optimum operational condition the maximum fractional yield of $He^{-}$ ions is $2.42\pm0.02%$ This charge exchange cell is proved to be an effective system for the production of He- ions.

  • PDF

Separation and Recovery of Heavy Metal Ion using Liquid Membrane (액체막법에 의한 중금속이온의 분리 및 회수)

  • Jo, Mun Hwan;Jeong, Hak Jin;Lee, Sang In;Kim, Jin Ho;Kim, Si Jung
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.122-128
    • /
    • 1994
  • Macrocyclic ligand has been known to selectively bind with metal ions so that ability applied for the transport of metal ions across the emulsion liquid membrane in this study. The metal ions are transproted from the source phase to the receiving phase by the carrier of the organic phase. Several factors involved in the transport of metal ions acrose the emulsion membrane we reported here and these factors provided the informations for the selective seperation of some metal ion. Stability constants for cation-macrocyclic ligand and metal ion-anion receiving phase interaction are examined as parameters for the prediction of metal ion transport selectivities. $Pb^{2+}$ was transported higher rates than the other metal ions in the mixture solution. The interaction of metal ion to anion in receiving phase is important. $S_2O_3^{2-}$- in replacement of $NO_3^-$ in the receiving phase enhances the transport of $Pb^{2-}$since $Pb^{2-}-S_2O_3^{2-}$interaction is greater than $Pb^{2+}-NO_3^-$ interaction.

  • PDF

Characterization of X-ray Emitted in the Ion Implantation Process of Semiconductor Operations (반도체 제조 이온주입 공정의 이온 임플란타 장치에서 엑스레이 발생 특성)

  • Dong-Uk Park;Kyung Ehi Zoh;Soyeon Kim;Seunghee Lee;Eun Kyo Jeong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.439-446
    • /
    • 2023
  • Objectives: The aims of this study are to investigate how X-rays are emitted to surrounding parts during the ion implantation process, to analyze these emissions in relation to the properties of the ion implanter equipment, and to estimate the resulting exposure dose. Eight ion implanters equipped with high-voltage electrical systems were selected for this study. Methods: We monitored X-ray emissions at three locations outside of the ion implanters: the accelerator equipped with a high-voltage energy generator, the impurity ion source, and the beam line. We used a Personal Portable Dose Rate and Survey Meter to monitor real-time X-ray levels. The SX-2R probe, an X-ray Features probe designed for use with the RadiagemTM meter, was also utilized to monitor lower ranges of X-ray emissions. The counts per second (CPS) measured by the meter were estimated and then converted to a radiation dose (𝜇Sv/hr) based on a validated calibration graph between CPS and μGy/hr. Results: X-rays from seven ion implanters were consistently detected in high-voltage accelerator gaps, regardless of their proximity. X-rays specifically emanated from three ion implanters situated in the ion box gap and were also found in the beam lines of two ion implanters. The intensity of these X-rays did not show a clear pattern relative to the devices' age and electric properties, and notably, it decreased as the distance from the device increased. Conclusions: In conclusion, every gap, in which three components of the ion implanter devices were divided, was found to be insufficiently shielded against X-ray emissions, even though the exposure levels were not estimated to be higher than the threshold.

Individual Charge Equalization Converter Using Selective Two Current Paths for Series Connected Li-ion Battery Strings

  • Kim, Chol-Ho;Park, Hong-Sun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.274-276
    • /
    • 2008
  • This paper proposes an individual charge equalization converter using selective two current paths for series connected lithium-ion battery strings. In the proposed equalizer, a central equalization converter acting as a controllable current source is sequentially connected in parallel with individual batteries through an array of cell selection switches. A flyback converter with a modified rectifier realizes a controllable current source. A central equalization converter is shared by every battery cells through the cell selection switch, instead of a dedicated charge equalizer for each cell. With this configuration, although the proposed equalizer has one dc-dc converter, individual charge equalization can be effectively achieved for the each cell in the strings. Furthermore, since the proposed equalizer would not allocate the separated dc-dc converter to each cell, such that the implementation of great size reduction and low cost can be allowed. In this paper, an optimal power rating design guide is also employed to obtain a minimal balancing size while satisfying equalization requirements. A prototype for eight lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed equalization method has good cell balancing performance showing small size, and low cost.

  • PDF

Effect on 4H-SiC Schottky Rectifiers of Ar Discharges Generated in A Planar Inductively Coupled Plasma Source

  • Jung, P.G.;Lim, W.T.;Cho, G.S.;Jeon, M.H.;Lee, J.W.;Nigam, S.;Ren, F.;Chung, G.Y.;Macmillan, M.F.;Pearton, S.J.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2003
  • 4H-SiC Schottky rectifiers were exposed to pure Ar discharges in a planar coil Inductively Coupled Plasma system, as a function of source power, of chuck power and process pressure. The reverse breakdown voltage ($V_B$) decreased as a result of plasma exposure due to the creation of surface defects associated with the ion bombardment. The magnitude of the decrease was a function of both ion flux and ion energy. The forward turn-on voltage ($V_F$), on-state resistance ($R_{ON}$) and diode ideality factor (n) all increased after plasma exposure. The changes in all of the rectifier parameters were minimized at low power, high pressure plasma conditions.

A Carbon Nanotube Field Emitter with a Triode Configuration for a Miniature Mass Spectrometer (초소형 질량분석기를 위한 삼극관 구조의 탄소나노튜브 전자방출원)

  • Lee, Yu-Ri;Lee, Ki-Jung;Hong, Nguyen Tuan;Lee, Soon-Il;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1001-1006
    • /
    • 2012
  • This paper presents a carbon nanotube (CNT) triode-structure field emitter as an ion source in a micro time-of-flight mass spectrometer(TOF-MS). In the ion source by field emission, the electrons emitted from cathodes under an electric field accelerated to the anode and ionize gas molecules by impact before arriving the anode. The generated positive ions are to be accelerated to the ion collector. Whereas most of ions are drawn to the cathodes in diode field emitters, a grid in the triode field emitter prevents the ions from being drawn to the cathodes. The triode field emitter is fabricated by micromachining. The cathode is composed of six CNT cylinders. The total size of the fabricated device is $8.0{\times}7.3{\times}1.9mm^3$. The anode and the grid current of the fabricated CNT field emitter were measured for various anode and grid voltages. When the anode and the grid voltages are 1000 V and 990 V, respectively, the emission current passing through the ionization region is 8.6 ${\mu}A$, which is a sufficient emission current for ionization and mass spectrometry.

Attenuation curves of neutrons from 400 to 550 Mev/u for Ca, Kr, Sn, and U ions in concrete on a graphite target for the design of shielding for the RAON in-flight fragment facility in Korea

  • Lee, Eunjoong;Kim, Junhyeok;Kim, Giyoon;Kim, Jinhwan;Park, Kyeongjin;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.275-283
    • /
    • 2019
  • Rare isotope beam facilities require shielding data in early stage of their design. There is much less shielding data on neutrons from the reactions between heavy ion beams and matter than the data on neutrons produced by protons. The purpose of the present work is to produce and thus increase the amount of shielding data on neutrons generated by high-energy heavy ion beams based on the RAON in-flight fragment facility. Calculations were performed with the computational Monte Carlo codes PHITS and MCNPX. The secondary neutron source terms were evaluated at 550 MeV/u for Ca, Kr, and Sn and at 400 MeV/u for U ions on a graphite target. Source terms and attenuation lengths were obtained by fitting the ambient dose equivalent inside an ordinary concrete shield.

Characterization of via etch by enhanced reactive ion etching

  • Bae, Y.G.;Park, C.S.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.236-243
    • /
    • 2004
  • The oxide etching process was characterized in a magnetically enhanced reactive ion etching (MERIE) reactor with a $CHF_3CF_4$ gas chemistry. A statistical experimental design plus one center point was used to characterize relationships between process factors and etch response. The etch response modeled are etch rate, etch selectivity to TiN and uniformity. Etching uniformity was improved with increasing $CF_4$ flow ratio, increasing source power, and increasing pressure depending on source power. Characterization of via etching in $CHF_3CF_4$ MERIE using neural networks was successfully executed giving to highly valuable information about etching mechanism and optimum etching condition. It was found that etching uniformity was closely related to surface polymerization, DC bias, TiN and uniformity.

A Study on Photoresist Stripping Using High Density Oxygen Plasma (고밀도 산소 플라즈마를 이용한 감광제 제거공정에 관한 연구)

  • Jung, Hyoung-Sup;Lee, Jong-Geun;Park, Se-Geun;Yang, Jae-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.95-100
    • /
    • 1998
  • A helical inductively coupled plasma asher, which produces low energy and high density plasma, has been built and investigated for photoresist stripping process. Oxygen ion density in the order of $10^{11}/cm^3$ is measured by Langmuir probe, and higher oxygen radical density is observed by Optical Emission Spectrometer. As RF source power is increased, the plasma density and thus photoresist stripping rate are increased. Independent RF bias power to the wafer stage provides a dc bias to the wafer and an ability to add the ion assisted reaction. At 1 KW of the source power, the coupling mechanism of the RF power to the plasma is changed from the inductive mode to the capacitive one at about 1 Torr. This change causes the plasma density and ashing rate decreases abruptly. The critical pressure of the mode change becomes larger with larger RF power.

  • PDF