• Title/Summary/Keyword: ion selectivity

Search Result 462, Processing Time 0.023 seconds

Synthesis and Ion Binding Properties of Rebek's Cleft-Type Ionophores Bearing Two Convergent Carboxylix Acid Functions

  • 김남이;박성우;장석규
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.519-522
    • /
    • 1997
  • A series of new ligands having convergent dicarboxylic acid functions, based-upon Rebek's cleft-type ionophore, have been prepared and their ion binding properties were investigated by the competitive extraction and transport experiments. The main purpose of the modification was to increase the lipophilicity of the Rebek's ionophore, which was attempted by utilizing propyl analog of Kemp's triacid or by changing the bridging unit. Ionophores 5 and 6 were found to have a pronounced ion-binding property toward Ca2+ ion. The selectivity in competitive extraction of ionophore 5 at pH 9 for Ca2+ over Mg2+ and Sr2+ is 2.0 and 59.3, respectively. The selectivity in competitive transport of ionophore 5 for Ca2+ over Mg2+ and Sr2+ is 29.8 and 99.3, and that of ionophore 6 is 10.0 and 23.2, respectively.

Polymeric Lead(II)-selective Electrode Based on N,N'-Bis-thiophen-2-ylmethylene-pyridine-2,6-diamine as an Ion Carrier

  • Kim, Hee-Cheol;Lee, Hyo-Kyoung;Choi, A-Young;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.538-542
    • /
    • 2007
  • Polymeric electrodes for lead ion based on N,N'-bis-thiophen-2-ylmethylene-pyridine-2,6-diamine as an ion carrier were prepared. The membrane electrode (m-3) containing o-NPOE as a plasticizer and 50 mol% additive of ionophore gives an excellent Nernstian response (29.59 mV/decade) and the limit of detection of ?log a (M) = 5.74 to Pb2+ in Pb(NO3)2 solution at room temperature. The prepared electrode provided good sensitivity and outstanding selectivity and response for Pb2+ over a wide variety of other metal ions in pH 7.0 buffer solutions. The good sensitivity and selectivity towards lead ion are attributed to the strong complexation of lead ion to N,N'-bis-thiophen-2-ylmethylene-pyridine-2,6-diamine which has geometrically the proper cavity to coordinate to the ligand.

The Mixed-Bed Ion Exchange Performance and Temperature Effects at Ultra-Low Concentrations - 2.Temperature Effects - (초저이온 농도범위에서 혼합층 이온교환능과 온도의 영향 - 2. 온도의 영향 -)

  • Yoon, Tae Kyung;Noh, Byeong Il;Lee, Chang Won;Moon, Byung Hyun;Lee, Gang Choon;Jo, Myung Chan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.206-211
    • /
    • 1999
  • Mixed-bed ion exchange performance was studied experimentally with variations of cation to anion resin ratio, resin weight and temperature at ultralow sodium chloride solution concentrations of less than $1.0{\times}10^{-4}M$. Analyzing the effluent concentration histories the performance test was examined as a function of tested solution volume for a laboratory-scale continuous flow column until both the cation and anion-exchange resins were exhausted. Initial leakage was observed for both cation and anion breakthrough curves, but serious at cation breakthrough curve because of low selectivity coefficient. The slope of breakthrough curve was affected by selectivity coefficient and temperature. The slope of anion breakthrough curve was steep because of the large selectivity coefficient, and ion exchange rates increased as temperature increased. The temperature effect decreased as the total volume was increased or as the resins were exhausted.

  • PDF

Effects of Bias Voltage and Ion-incident Angle on the Etching of Photoresist in a High-density CHF3 Plasma (고밀도 CHF3 플라즈마에서 바이어스 전압과 이온의 입사각이 Photoresist의 식각에 미치는 영향)

  • Kang, Se-Koo;Min, Jae-Ho;Lee, Jin-Kwan;Moon, Sang Heup
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.498-504
    • /
    • 2006
  • The etch rates of photoresist (PR) and the etch selectivity of $SiO_2$ to PR in a high density $CHF_3$ plasma were investigated at different ion-incident angles and bias voltages. A Faraday cage was employed for the accurate control of ion-incident angles. The ion energy was controlled by changing bias voltages. The etch rate of $SiO_2$ continuously decreased with ion-incident angles but the etch rate of PR remained constant up to the middle angle region and decreased afterwards. The etch rates of $SiO_2$ normalized to those at $0^{\circ}$ incident angle changed with the ion-incident angle following a cosine(${\theta}$) curve. On the other hand, the normalized etch rates of the PR changed showing a drastic over-cosine shape in the middle angle region. The etch selectivity of $SiO_2$ to PR decreased with an increase in the ion-incident angle because the etch yields of PR were enhanced by physical sputtering in the middle angle region compared to the case of $SiO_2$ etching. The etch selectivity of $SiO_2$ to PR decreased with an increase in the bias voltage at nearly all ion-incident angles.

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

Polymeric Iodide-ion Selective Electrodes Based on Urea Derivative as an Ionophore

  • Jeong, Dae-Cheol;Lee, Hyo-Kyoung;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.1985-1988
    • /
    • 2006
  • The polymeric membrane electrodes based on urea derivative as an ionophore were prepared and studied for the iodide-ion selective electrode. This membrane exhibits a linear stable response over a wide concentration range ($1.0\;{\times}\;10^{-5}\sim1.0\;{\times}\;10^{-2}$) with a slope of -57.7 mV/decade, a detection limit of log[$I^-$] = -5.63, and a selectivity coefficient for iodide against perchlorate anion (log$K^{pot}_{I^-,j}$ = -1.42). The selectivity series of the membrane gives the follow as $I^-$ > $SCN^-$, $Sal^-$ > $ClO_4^-$ > $NO_3^-$ > $Br^-$ > $NO_2^-$ > $Cl^-$ > $F^-$. The proposed electrode showed good selectivity and response for iodide anion over a wide variety of other anions in pH 5.0 buffer solutions.

Cobalt(III) Complexes of 1,3-Diaminopropane-N,N'-di-α-(β-methyl)-pentanoic Acid

  • 함혜영;박영준;전무진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.827-831
    • /
    • 1997
  • A novel ONNO-type tetradentate ligand, 1,3-diaminopropane-N,N'-di-α-(β-methyl)-pentanoic acid (H2apmp) and its cobalt(Ⅲ) complexes, [Co(apmp)X2]n+, (X=Cl-, NO2-, H2O, X2=CO32-, en, L-phenylalanine) have been synthesized. During the preparation of the dichloro cobalt(Ⅲ) complex of apmp, [Co(apmp)Cl2]-, the ligand has coordinated to the cobalt(Ⅲ) ion in a geometric selectivity to give only the uns-cis isomer and, during the substitution reaction between L-phenylalanine and [Co(apmp)Cl2]-, the L-phenylalanine has coordinated to the cobalt(Ⅲ) ion in a geometric selectivity to give only an uns-cis-meridional isomer. It is of interest that this is a rare case of the [Co(ONNO ligand)X2]n+-type complex preparations, which gives only an uns-cis isomer with geometric selectivity.

Theoretical Studies on the Electrophilic Methylation of Five-Membered Heteroaromatic Compounds with Dimethylfluoronium Ion

  • Chang Kon Kim;Ikchoon Lee;Bon-Su Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.537-540
    • /
    • 1991
  • Electrophilic methylation reactions of five-membered heteroaromatic compounds, furan, pyrrole and thiophene, with the dimethylfluoronium ion, ${CH_3}{FCH_3}(+), have been investigated theoretically by the MNDO method. The site selectivity of ${\alpha}, {\beta}$ and heteroatom (X) is related to charge density of the site, indicating that the site selectivity is dictated by electrosatic interaction between two reaction centers. The reactivity order between the three heteroaromatics can not be determined decisively since the order differs depending on which site is compared, with relatively low activation enthalpies, ${\Delta}{H^\neq}$= 20-30 kcal/mol, in all cases. These site and substrate selectivity behaviors are consistent with the gas-phase experimental results.

The Dry Etching Properties of ZnO Thin Film in Cl2/BCl3/Ar Plasma

  • Woo, Jong-Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.116-119
    • /
    • 2010
  • The etching characteristics of zinc oxide (ZnO) were investigated, including the etch rate and the selectivity of ZnO in a $Cl_2/BCl_3$/Ar plasma. It was found that the ZnO etch rate, the RF power, and the gas pressure showed non-monotonic behaviors with an increasing Cl2 fraction in the $Cl_2/BCl_3$/Ar plasma, a gas mixture of $Cl_2$(3 sccm)/$BCl_3$(16 sccm)/Ar (4 sccm) resulted in a maximum ZnO etch rate of 53 nm/min and a maximum etch selectivity of 0.89 for ZnO/$SiO_2$. We used atomic force microscopy to determine the roughness of the surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the plasmas. Due to the relatively low volatility of the by-products formed during etching with $Cl_2/BCl_3$/Ar plasma, ion bombardment and physical sputtering were required to obtain the high ZnO etch rate. The chemical states of the etched surfaces were investigated using X-ray photoelectron spectroscopy (XPS). This data suggested that the ZnO etch mechanism was due to ion enhanced chemical etching.