• Title/Summary/Keyword: ion rejection

Search Result 34, Processing Time 0.031 seconds

Micellar Enhanced Ceramic Microfiltration for Removal of Aqueous Ferrous Ion: Effect of Surfactant Concentration and $N_2$-back-flushing (용존 철(II) 제거를 위한 미셀형성 세라믹 정밀여과: 계면활성제 농도 및 질소 역세척의 영향)

  • Park, Jin-Yong;Kang, Sung-Gyu
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.136-144
    • /
    • 2009
  • In this study, sodium dedocyl sulfate (SDS), which was anionic surfactant, was added for forming micelles to remove ferrous ions that could be contained with a small amount in industrial water. Then aggregates were formed by adsorption or binding of ferrous ions on the surface of micelles, and then rejected by ceramic membranes to remove ferrous ions. Ferrous concentration was fixed at 1mM and SDS was changed as $0{\sim}10mM$ to investigate the effect of the anionic surfactant. As a result, rejection rate of ferrous was the highest to 88.97% at 6mM. And we used ELS (Electrophoretic Light Scattering Spectrometer) to investigate particle size distribution of micellar aggregates depending on SDS concentration. Then distribution of large aggregates was the highest at 6mM. And we investigated effects of $N_2$-back-flushing time (BT) during periodic $N_2$-back-flushing on ceramic membranes. Finally optimal $N_2$-BT for NCMT-723l (pore size $0.10{\mu}m$) membrane was 20 sec.

Wastewater Recycling from Electroless Printed Circuit Board Plating Process Using Membranes (분리막을 이용한 무전해 PCB 도금 폐수의 재활용)

  • 이동훈;김래현;정건용
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 2003
  • Membrane process was investigated to recover process water and valuable gold from washing water of electroless PCB plating processes. The filtration experiments were carried out using not only a RO membrane test cell to determine suitable membrane for washing water but also spiral wound membrane modules of nanofiltration and reverse osmosis for scale-up. At first, RO-TL(tap water, low pressure), RO-BL(brackish water, low pressure) and RO-normal(for water purifier) sheet membranes made by Saehan Co. were tested, and the performance of RO-TL membrane showed most suitable f3r recovery of soft etching, catalyst and Ni washing waters. As a result of RO test cell, the experiments for scale-up were carried out using RO-TL modules far water purifier at 7bar and $25^{\circ}C $The permeate flux fur Au washing water was about 30 LMH, but Au rejection was less than 80%. The permeate fluxes for Pd, Ni and soft etching washing water were about 22, 17 and 10 LMH, respectively. The Pd, Ni and Cu rejections showed more than 85, 97 and 98% respectively. The nanofiltration module for water purifier was introduced to recover Au selectively from Au, Ni and Cu ions in Au washing water. Most of Ni and Cu ions in the feed washing water were removed, and only Au ion was existed 81.9% in the permeate. Furthermore, Au ion in the permeate was concentrated and recovered by RO-TL membrane module. Finally, Au was also able to recover effectively by using 4 inch diameter spiral wound modules of NF and RO-TL membranes, in series.

Performance Analysis of Pressure-retarded Osmosis Power Using Biomimetic Aquaporin Membrane (생체모방형 아쿠아포린 분리막을 이용한 압력지연삼투 발전 성능분석)

  • Choi, Wook;Bae, Harim;Lee, Hyung-Keun;Lee, Jonghwi;Kim, Jong Hak;Park, Chul Ho
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.317-322
    • /
    • 2015
  • Salinity gradient power is a system which sustainably generates electricity for 24 hrs, if the system is constructed at a certain place where both seawater and river water are consistently pumped. Since power is critically determined by the water flux and the salt rejection, a membrane of water-semipermeable aquaporin protein in cell membranes was studied for pressure-retarded osmosis. NaCl was used as a salt, and $NaNO_3$ was used as a candidate to check the ion selectivity. The water flux of biomimetic aquaporin membranes was negligible at a concentration below 2M. Also, there is no remarkable dependence of water flux and ion selectivity on concentrations higher than 3M. Therefore, the biomimetic aquaporin membrane could not be applied into pressure-retarded osmosis; however, if a membrane could overcome the current limitations, the properties shown by natural cells could be accomplished.

High-$T_c$ 2nd-order SQUID Gradiometer for Use in Unshielded Environments (비차폐 환경에서의 고온초전도 SQUID 2차 미분기의 특성연구)

  • 박승문;강찬석;이순걸;유권규;김인선;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.50-54
    • /
    • 2003
  • We have fabricated $∂^2$$B_{z}$ /$∂x^2$ type planar gradiometers and studied their properties in operation under various field conditions. $YBa_2$$Cu_3$$O_{7}$ film was deposited on $SrTiO_3$ (100) substrate by a pulsed laser deposition (PLD) system and patterned into a device by the photolithography with ion milling technique. The device consists of 3 pickup loops designed symmetrically Inner dimension and the width of the square side loops are 3.6 mm and 1.2 mm, respectively, and the corresponding dimensions of the center loop are 2.0 mm and 1.13 mm. The length of baseline gradiometer is 5.8 mm. Step-edge junction width is 3.0 $\mu\textrm{m}$ and the hole size of the SQUID loop is 3 $\mu\textrm{m}$ ${\times}$ 52 $\mu\textrm{m}$. The SQUID inductance is estimated to be 35 pH. The device was formed on a 20 mm ${\times}$ 10 mm substrate. We have tested the behavior of the device in various field conditions. The unshielded gradiometer was stable under extremely hostile conditions on a laboratory bench. Noise level 0.45 pT/$\textrm{cm}^2$/(equation omitted)Hz and 0.84 pT/$\textrm{cm}^2$/(equation omitted)Hz at 1 Hz for the shielded and the unshielded cases, which correspond to equivalent field noises of 150 fT/(equation omitted)Hz and 280 fT/(equation omitted)Hz, respectively. In spite of the short baseline of 5.8 mm, the high common-mode-rejection-ratio of the gradiometer, $10^3$, allowed us to successfully record magnetocardiogram of a human subject, which demonstrates the feasibility of the design in biomagnetic studies.

  • PDF