• Title/Summary/Keyword: ion plating

Search Result 321, Processing Time 0.021 seconds

Effects of Bath Compositions and Plating Conditions on Electroless Copper Plating Rate with Sodium Hypophosphite as Reducing Agent (환원제로 차아인산나트륨을 사용한 무전해 동도금속도에 미치는 도금액 조성과 도금조건의 영향)

  • Oh, I.S;Park, J.D.;Bai, Y.H.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.71-78
    • /
    • 2001
  • Using sodium hypophosphite as reducing agent, bath composition and plating condition of electroless copper plating on plating rate have been studied. The followings were determined as optimum, bath composition; $CuSO_4\;0.025M,\;NiSO_4\;0.002M,\;NaH_2PO_2\;0.4M$, sodium citrate 0.06M, $H_3BO_3$ 0.6M, thiourea or 2-MBT $0.2mg/{\ell}$, and operation conditions; pH $9{\sim}10$ at bath temperature rage of $60{\sim}70^{\circ}C$. A small amount of nickel ion($Ni^{2+}/Cu^{2+}$=0.002/0.025) to the hypophosphite reduced solution promotes autocatalysis and continuous plating. An additive such as thiourea or 2-MBT of a small amount($0.2mg/{\ell}$) can be used to stabilize the solution without changing plating rate much. The attivation energy between $20^{\circ}C\;and\;70^{\circ}C$ were calculated to be 11.3kcal/mol for deposition weight. Plating reaction had been ceased by the adjustment of pH above 13, temperature higher than $90^{\circ}C\;and\;under\;20^{\circ}C$. Deposited surface became worse in the case of increment of bath temperature above $80^{\circ}C$.

  • PDF

A Study on the Recovery of Zinc ion from Metal-Plating Wastewater by Using Spent Catalyst (酸化鐵 廢觸媒에 의한 도금폐수중 아연이온 回收에 관한 基礎硏究)

  • 이효숙;오영순;이우철
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.23-28
    • /
    • 2001
  • Zinc ion could be recovered from metal plating wastewater with the spent iron oxide catalyst which was used in the plant of Styrene Monomer(SM) production. The zinc was recovered more than 98.7% at higher than pH 2.0. The saturation magnetization of the spent catalyst is enough high as 59.4 emu/g to apply in the solid-liquid separation after treating the wastewater. The mechanism of zinc recovery with the iron oxide catalyst could be a electro-chemical adsorption at pH 3.0~8.5, and a precipitation as $Zn(OH)_2$ at higher than pH 8.5.

  • PDF

A Study on the TiC Coating Using Hollow Cathode Discharge Ion Plating (HCD 이온 플레이팅 방법을 이용한 TiC 코팅에 관한 연구)

  • Kim, In-Cheol;Seo, Yong-Woon;Whang, Ki-Whoong
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.261-264
    • /
    • 1991
  • Titanium carbide(TiC) films were deposited on stainless-steel sheets using HCD(Hollow Cathode Discharge) reactive ion plating. Acetylene gas was used as the reactant gas. The characteristics of TiC films were examined by X-Ray diffraction, $\alpha$-step, ESCA(Electron Spectroscopy for Chemical Analysis), and, AES(Auger Electron Spectroscopy). The results were discussed with regard to various deposition conditions(bias voltage, acetylene flow rate, temperature).

  • PDF

Effect of the WC particle size and Co content on the adhesion property between AIP-TiN coating and WC-Co substrate (AIP-TiN/WC-Co계에서 WC입자크기와 Co함량이 밀착력에 미치는 영향)

  • 한대석;류정민;권식철;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.165-171
    • /
    • 2002
  • TiN coating were deposited onto different WC-Co substrates using arc ion plating (AIP) technique. The structure and morphology for the deposited coating were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). The adhesion behavior of the deposited TiN coating was investigated with a conventional scratch test. Effects of WC particle size and Co content on the adhesion strength between the deposited TiN coating and substrate were studied. During the scratch test, the value of critical load was dependent of WC particle size and Co content on substrate. As the WC particle size and Co content on substrate decreased, the critical load increased. The highest critical load, approximately 110N, was obtained at WC particle size of 1$\mu\textrm{m}$ and Co content of 10wt.%.

Effect of Furnace Temperature on the Property of TiN-Coated Layer on Hard Metal by Arc Ion Plating (AIP 코팅법에서 로의 온도가 초경합금의 TiN 코팅층 성질에 미치는 영향)

  • Kim Hae-Ji;Joun Man-Soo;Kim Nam-Kyung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.49-55
    • /
    • 2006
  • The effect of coating temperature with regard to surface properties of TiN-coated layer on hard metal(WC-Co) are experimentally investigated. Hardness, surface roughness, TiN coating thickness and adsorption force were measured in order to evaluate the effect of coating temperature. The two-way ANOVA method is used in order to evaluate the experimental data. In AIP processing, It is concluded that the furnace temperature in the range of $400^{\circ}C\~500^{\circ}C$ affected to a little increasing the number of production with the coating temperature.

A Comparative Study on the Characteristics of TiN Films Deposited by Plasma-Assisted CVD, Ion Plating and Reactive Sputtering (플라즈마 화학증착법, 이온 플레이팅법 및 반응성 스퍼터링법에 의해 증착된 TiN 박막의 특성 비교 연구)

  • 안치범;정병진;이원종;천성순
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.731-738
    • /
    • 1994
  • TiN films were deposited on high speed steels by plasma assisted chemical vapor deposition (PACVD), cathode arc ion plating (CAIP) and reactive magnetron sputtering (RMS). The properties of the films deposited by the three different methods were compared. The preferred oriented plane of PACVD-TiN is (200) and those of CAIP-TiN and RMS-TiN are (111). PACVD-TiN shows a dome surface and a microstructure having small grains. CAIP-TiN shows the highest microhardness and the best adhesion strength of the three because it has a dense microstructure and an ill-defined interface. But is shows the greatest surface roughness due to the Ti droplet created by the arc. RMS-TiN shows a microstructure having large voids so that its properties in microhardness and adhesion are the worst of the three.

  • PDF

Comparative study on impact behavior of TiN and TiAlN coating layer on WC-Co substrate using Arc ion Plating Technique (아크이온 플레이팅법으로 WC-Co에 증착된 TiN 및 TiAlN박막의 충격특성 비교)

  • 윤순영;류정민;윤석영;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.6
    • /
    • pp.408-414
    • /
    • 2002
  • TiN and TiAlN coating layer were deposited on WC-Co steel substrates by an arc ion plating(AIP) technique. The crystallinity and morphology for the deposited coating layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The impact behaviors of the deposited TiN and TiAlN coating layer were investigated with a ball-on-plate impact tester. Beyond $10^2$ impact cycle, TiAlN coating layer showed superior impact wear resistance compared to TiN coating layer. On the other hand, both TiN and TiAlN coating layers started to be partially failed between $10^2$ and $10^3$ impact cycle. Above $10^3$ impact cycle, TiN and TiAlN coating layers showed similar impact behavior because of the substrate effect.

A Study on the Wear Resistance Behaviors of TiN Films on Tool Steels by Cathode Arc Ion Plating Method (음극아크 이온 플레이팅법에 의한 공구강상의 TiN 피막의 내마모 특성에 관한 연구)

  • 김강범;정창준;백영남
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.6
    • /
    • pp.343-351
    • /
    • 1995
  • Titanium nitride films have been prepared on various substrates (silicon wafer, HSS) by cathode arc ion plating process to measure microhardness, adhesion and wear-resistant behaviors by changing the substrate bias voltages (0∼-300V), thickness and roughness. Microhardnesses were measured by micro vickers hardness tester, the adhesion strengths were evaluated by acoustic signals through the scratch test with incremental applied load. As the substrate bias voltages were increased, the {111} orientation was predominant, the microhardnesses and adhesion strengths of tool steel were observed to be stronger than those of without subatrate bias voltage. Adhesion strengths of the substrate bias were 4-7 times higher than those of without the substrate bias, confirmed by SEM with EDX. Wear resistances were used pin-on-disk tribotester and TiN costing reduced the abrasive wear. As the substrate bias was increased, the weight loss and the friction coefficient was decreased.

  • PDF

CrN and TiN Coatings for the Wear Resistance of Extrusion Mold for Magnesium (마그네슘 압출용 금형의 내마모성 향상을 위한 CrN, TiN 코팅)

  • Lee, Su-Young;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.233-238
    • /
    • 2011
  • The friction and wear characteristics of CrN and TiN coatings on SKD61 which is mold material using for extrusion of AZ80 magnesium alloy were investigated. The coatings were deposited by the arc ion-plating method, and the thickness were about $3.59{\mu}m$ and $3.28{\mu}m$, respectively. Reciprocating friction wear tests were conducted by varying pin load and temperature of counter substrate at un-lubricated condition. The pin loads were 11, 15 and 19 kgf, and the substrate temperatures were room temperature and $120^{\circ}C$. CrN coating which has a lower friction coefficient and a smaller adhesive wear with AZ80 magnesium alloy showed better wear resistance than TiN coating.

Effects of Chloride Ion on Accelerator and Inhibitor during the Electrolytic Cu Via-Filling Plating (전해 Cu Via-Filling 도금에서 염소이온이 가속제와 억제제에 미치는 영향)

  • Yu, Hyun-Chul;Cho, Jin-Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.158-161
    • /
    • 2013
  • Recently, the weight reduction and miniaturization of the electronics have placed great emphasis. The miniaturization of PCB (Printed Circuit Board) as main component among the electronic components has also become progressed. The use of acid copper plating process for Via-Filling effectively forms interlayer connection in build-up PCBs with high-density interconnections. However, in the case of copper-via filled in a bath, which is greatly dependent on the effects of additives. This paper discusses effects of Cl ion on the filling of PCB vias with electrodeposited copper based on both electrochemical experiment and practical observation of cross sections of vias.