• Title/Summary/Keyword: ion pairing

Search Result 49, Processing Time 0.019 seconds

Study for the separation and comparison of azo dyes and their diazo components (아조염료와 디아조 성분의 분리 및 비교에 관한 연구)

  • Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.50-57
    • /
    • 2006
  • Well known environmental wastes from dye industry were separated by the micellar electrokinetic capillary chromatography(MECC). These wastes include H-acid modifier and 2-naphthylamine-1,5-disulfonic acid, and are known to be the diazo components of the azo dye. The results of the separation were compared with the result obtained by the HPLC using ion-pairing mechnism. MECC method was also applied to separate a few direct dyes including Direct Blue 2, Direct Blue 6 and Direct Blue 15, and reactive dye such as Reactive Orange 4. Informations about the diazo components of any azo dye could be obtained by comparison of electropherogram of the reduction solution of given dye with those obtained from standard materials such as H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid which are used as diazo components of the typical azo dyes. It has been concluded that MECC and HPLC with ion-pairing mechanism could be successfully applied for the analysis of unknown dyes and their diazo components.

Spectrophotometric Determination of Amantadine Sulfate after Ion-Pairing with Methyl Orange

  • Choi, Kyong;Choi, Jung-Kap;Yoo, Gyurng-Soo
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.285-289
    • /
    • 1991
  • A convenient spectrophotometric method was examined for the determination of amantadine sulfate (AMTS) which has no UV-VIS chromopohores. AMTS was ion-paired quantitatively with methyl orange (MO) at $70^{\circ}C$ for 30 min. The ion-paired complex was extracted with dichloromethane and the absorbance was measured at 421.5 nm. A linear relationship was observed in the range of $2.5{\times}10^{-7}\;M$ to $3.75{\times}10^{-6}\;M$ and the correlation coefficient was 0.999 (n=3). This assay method was applied to the quantification of AMTS in commercial tablet form with good recovery and high precision.

  • PDF

Effects of Li$^+$ and Ag$^+$ Ions on the Rotational Barrier in Acetamide and propionamide System

  • Kwon, Dae-Keun;Choi, Young-Sang;Yoon, Chang-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 1986
  • The influences of $LiNO_3\;and\;AgNO_3$ on the N-C(O) rotational barrier of N,N-dimethylacetamide and N,N-dimethylpropionamide have been investigated. The rotational activation free energy $({\Delta}G^{\neq})\;for\;Li^{+}$-amide complexes is found to increase with increasing salt concentration. On the other hand, that for $Ag^+$-amide complexes increases in the presence of $Ag^+$ ion up to 0.25 M ion concentration and then decreases as the concentration of $Ag^+$ ion is further increased. Such an unusual behavior of $Ag^+$-amide complexes has been interpreted in terms of ion-pairing and diluent effect on the amides. However, $^{13}C$ nmr chemical shift data for the amides have shown that both of these ions interact primarily with the carbonyl group in amides.

The Effect of Alkali Metal Ions on Nucleophilic Substitution Reactions of Aryl 2-Furoates with Alkali Metal Ethoxides in Ethanol

  • Dong-Sook Kwon;Jung-Hyun Nahm;Ik-Hwan Um
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.654-658
    • /
    • 1994
  • Rate constants have been measured spectrophotometrically for the nucleophilic substitution reactions of p-and m-nitrophenyl 2-furoates (4 and 5, respectively) with alkali metal ethoxides ($EtO^-M^+$) in absolute ethanol at 25$^{\circ}$C. The reactivity of $EtO^-M^+$ toward 4 is in the order $EtO^-K^+$ > $EtO^-Na^+$> $EtO^-Li^+$ > $EtO^-K^+$+ 18-crown-6 ether. This is further confirmed by an ion pairing treatment method. The present result indicates that (1) ion paired $EtO^-M^+$ is more reactive than dissociated $EtO^-$ ; (2) the alkali metal ions ($K^+,\;Na^+,\;Li^+$) behave as a catalyst; (3) the catalytic effect increases with increasing the size of the metal ion. A similar result has been obtained for the reaction of 5, however, the catalytic effects shown by the metal ions are more significant in the reaction of 5 than in that of 4.

Solvent Extraction of Trace Mo(VI) in Natural Water Samples by Chelation and Ion-pairing (킬레이트 및 이온쌍 형성을 이용한 자연수 중 극미량 Mo(VI)의 용매추출)

  • Kim, Young-Sang;Nho, Seung-Gu;Choi, Jong-Moon;Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.289-296
    • /
    • 1993
  • The formation of Mo(VI)-alizarin red S chelate ion and its extraction into an organic solvent by ion-pairing were studied for the separative determination of trace Mo(VI) in natural water samples. Natural water 100mL was sampled in 250mL separatory funnel. After Mo(VI)-ARS chelate ion was formed by adding 0.01M alizarin red S solution 0.5mL to the water sample of pH 4.0, 0.2% aliquat-336 chloroform solution 10mL was added and the solution was vigorously shaked for about 30 seconds to from the ion-pair between Mo(VI)-ARS and aliquat-336, completely. The solution was stood for about 90 minutes. And the organic phase was taken for the absorbance measurement of the ion-pair at 520 nm. The content of Mo(VI) in sample was obtained from the standard calibration curve. Several extraction conditions such as pH, adding amounts of alizarin red S and aliquat-336, and shaking and standing times were optimized. This procedure was applied to the analysis of river and tap waters. It could be confirmed from the recoveries of over 99% in samples spiked with a given amount of Mo(VI) that this method was quantitiative in the determination of trace Mo(VI) in a natural water.

  • PDF

Determination of Theophylline and its Metabolites in Human Urine by High-Performance Liquid Chromatography

  • Kim, Kyeong-Ho;Park, Young-Hwan;Park, Hyo-Kyung;Kim, Ho-Soon;Lee, Min-Hwa
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.396-399
    • /
    • 1996
  • High-performance liquid chromatographic method with UV detecction was developed for the determination of theophylline and its metabolites in human urine using ${beta}$-hydroxyethyl theophylline$({beta} -HET)$ as an internal standard. For extraction of urine sample, quality control sample and xanthine-free blank urine were mixed with decylamine (ion-paring reagent) and ${beta}$-HET. After saturation with ammonium sulfate, the mixture was then extracted with organic solvent at pH values of 4.0-4.5. All separations were performed with ion-pair chromatography using decylamine as an ion-pairing reagent and 3mM sodium acetate buffered mobile phase (pH 4.0) containing 1% (v/v) acetonitrile and 0.75 mM decylamine. The detection limits of theophylline, 1, 3-DMU, 1-MU, 3-MX and 1-MX in human urine were 0.17, 0.17, 0.39, 0.19 and 0.19 ${\mu}g$/ml, based on a signal-to-noise ratios of 3.0. The mean intraday coefficients of variation (C.V.s) of each compound on nine replicates were lower than 2.0%, while mean interday C.V.s on three days were lower than 1.6%. All separations were finished within 40miutes.

  • PDF

The Catalytic Effect of Alkali Metal Ions on Reactions of 8-(5-Nitroquinolyl) 2-Furoate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Eum, Ik Hwan;Lee, Seong Eun;Min, Ji Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.669-672
    • /
    • 2001
  • Pseudo-first-order rate constants have been measured spectrophotometrically for the title reactions. The plot of kobs vs the concentration of alkali metal ethoxides is linear for the reactions performed in the presence of complexing age nt, 18-crown-6 ether, but curved upwardly for the corresponding reactions performed in the absence of the complexing agent, indicating that the alkali metal ions studied in this study behave as a catalyst. The catalytic effect was found to increase in the order Li+ << K+ ${\leq}$ Na+. Second-order rate constants were determined for the reactions with dissociated free ethoxide (kEtO-) and with ion paired alkali metal ethoxides (kEtO-M+ ) from ion pairing treatments. The magnitude of catalytic effect (kEtO-M+/kEtO-) was found to be 2.3, 9.5 and 8.7 for the reaction of 8-(5-nitroquinolyl) 2-furoate, while 1.4, 3.6 and 4.2 for that of 4-nitrophenyl 2-furoate, indicating that the catalytic effect is larger in the reaction of the former substrate than in that of the latter one. The larger catalytic effect was attributed to two possible complexing sites with alkali metal ions in the former substrate.

The Effect of Alkali Metal Ions on Reactions of 8-(5-Nitroquinolyl) 3-Furoate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Eum, Ik Hwan;Lee, Seong Eun;Min, Ji Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.673-677
    • /
    • 2001
  • Pseudo-first-order rate constants have been measured spectrophotometrically for the reactions of 8-(5-nitroquinolyl) 3-furoate with alkali metal ethoxides in anhydrous ethanol. The plot of kobs vs the concentration of alkali metal ethox ides is linear for the reactions performed in the presence of a complexing agent, 18-crown-6 ether, but exhibits upward curvatures for the corresponding reactions performed in the absence of the complexing agent, indicating that the alkali metal ions in this study behave as catalysts. Second-order rate constants were determined for the reactions with dissociated free ethoxide (kEtO-) and with ion paired alkali metal ethoxides (kEtO-M + ) from ion pairing treatments. The magnitude of catalytic effect (kEtO-M + /kEtO-) was found to be 1.7, 3.4 and 2.5 for the reaction of 8-(5-nitroquinolyl) 3-furoate, while 1.4, 3.6 and 4.2 for that of 4-nitrophenyl 2-furoate, 1.8, 3.7 and 2.4 for that of 8-(5-nitroquinolyl) benzoate, and 2.0, 9.8 and 9.3 for that of 8-(5-nitroquinolyl) 2-furoate with EtO- Li+ , EtO- Na+ and EtO- K+ , respectively. A 5-membered chelation at the leaving group is suggested to be responsible for the catalytic effect shown by alkali metal ions.

Determination of Zinc and Lead in Water Samples by Solvent Sublation Using Ion Pairing of Metal-Naphthoate Complexes and Tetra-n-butylammonium Ion

  • Kim, Yeong Sang;Choe, Yun Seok;Lee, Won;Lee, Yong Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.821-826
    • /
    • 2001
  • Solvent sublation has been studied for the separation and determination of trace Zn(Ⅱ) and Pb(Ⅱ) in water samples. A synergy producing method was utilized to improve the efficiency of extraction in the sublation using an ion-pair of metal-naphth oate {M-(Nph)3- } complexes and tetra-n-butylammonium (TBA+ ) ion. After the M-(Nph)3- complexes were formed by adding 1-naphthoic acid to the sample solution, tetra-n-butylammonium bromide was added in the solution to form the ion-pair. And sodium lauryl sulfate (SLS) was added to make the ion-pair hydrophobic. The ion-pairs of the metal complexes were floated and extracted into methylisobutyl ketone (MIBK) from the aqueous solution by bubbling with nitrogen gas in a flotation cell. Metal ions in MIBK solution were measured by graphite furnace-AAS. Experimental conditions were optimized as follow so. After the pH of a 1.0 L water sample was adjusted to 5.0, 6.0 mL of 0.1 M 1-HNph and 10 mL of 0.03 M TBA-bromide were added to the sample to form ion-pairs, and 2.0 mL of 0.2%(w/v) SLS was added to make the ion-pairs hydrophobic. The solution was bubbled with 30 mL/min N2 gas for 5 minutes in a flotation cell. Linear calibration curves were obtained for the determination of Zn(Ⅱ) and Pb(Ⅱ) in several water samples. Reproducible results of showing a relative standard deviation of < 10% and recoveries of 80-100% could be obtained.

Effect of ion Pairing on the Cellular Transport of Antisense Oligonucleotide

  • Song, Kyung;Kim, Kyoung-Mi;Kim, Jae-Baek;Ko, Geon-Il;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.438-442
    • /
    • 1997
  • Antisense oligonucleotide represents an interesting tool for selective inhibition of gene expression. However, their low efficiency of introduction within intact cells remains to be overcome. Antisense-$TGF{\beta}$ (25 mer) and antisense-$TGF{\beta}$ (18 mer) were used to study the cellular transport and biological function of antisense oligonucleotide in vitro. Since TGF and TNF play on important role in regulating the nitric oxide production from macrophages, the action of the above antisense oligonucleotides was easily monitored by the determination of nitrite. Poly-L-lysine, benzalkonium chloride and tetraphenylphosphonium chloride were used as polycations, which neutralize the negative charge of antisense oligonucleotide. The production of nitric oxide mediated by .gamma.-IFN in mouse peritoneal macrophage was increased by antisense-TGF.betha. in a dose-dependent manner. Antisense-$TGF{\beta}$ reduced the nitric oxide release from activated RAW 264.7 cells. Significant enhancement in the nitric oxide production was investigated by the cotreatment of poly-L-lysine with antisense-$TGF{\beta}$On the meanwhile, inhibition effect of antisense-$TGF{\beta}$ is not changed by the addition of poly-L-lysine. These results demonstrate that control of expression of $TGF{\beta}$ and TNF.alpha. gene is achieved using antisense technology and the cellular uptake of antisense oligonucleotide could be enhanced by ion-pairing.

  • PDF