• Title/Summary/Keyword: ion loss

Search Result 385, Processing Time 0.027 seconds

Stability Characteristics of Sn Species Behavior on Surface of a Sn-modified Pt Electrode for Electrolytic Reduction of Nitrate Ion (질산염 이온의 전해 환원을 위한 Sn-modified Pt 전극 표면에서의 Sn 안정성 거동 특성)

  • Kim, Kwang-Wook;Kim, Seong-Min;Kim, Yeon-Hwa;Lee, Eil-Hee;Jee, Kwang-Yong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.433-441
    • /
    • 2007
  • This work investigated the stability of a Sn-modified Pt electrode, which was used for reduction of nitrate, fabricated by an adsorption or electro-deposition of Sn on Pt. In order to find the causes for instability of the electrode, the effects of the solutions in which the electrode was used and the potential applied to the electrode on the electrochemical and metallurgical behaviors of Sn on Pt were studied. The Sn of freshly- prepared modified-Sn Pt electrode existed as Sn hydroxide form, which brought about an easy loss of the electro-activity of the electrode even staying in water, especially in acid solution. When the Sn-modified Pt electrode was used for the reduction of nitrate, the electro-activity of the electrode was affected depending on the potential applied to the electrode. When a more negative potential than the redox equilibrium potential between $Sn(OH)_2$ and Sn was applied to the electrode, the Sn hydroxide was converted to Sn that could diffused into Pt, which leaded to the loss of electro-activity of the electrode as well. The solid diffusion of Sn increased linearly with the applied potential. The Sn-electrodeposited Pt electrode which had more Sn on the electrode was more favorable to maintaining the integrity of the electrode during the reduction of nitrate than the Sn-adsorbed Pt electrode prepared in the under-potential deposition way.

Comparison of Prevention Methods against Enamel Demineralization adjacent to Orthodontic Bracket Using Fluoride (교정용 브라켓 주위의 불소를 이용한 법랑질 탈회 예방 방법 비교)

  • Mo, Hyelim;Kim, Jongsoo;Oh, Sohee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.3
    • /
    • pp.293-300
    • /
    • 2019
  • As a common side effect of fixed orthodontic treatment, demineralization of the enamel adjacent to the bracket and band occurs in patients with poor oral hygiene. The purpose of this study was to investigate what is the most effective method to prevent demineralization around the fixed orthodontic appliance among various methods using fluoride. 80 extracted bovine incisors with a healthy surface were classified into four groups as experimental materials: (Group I) Control group, (Group II) V $varnish^{TM}$, (Group III) Tooth Mousse $Plus^{(R)}$, (Group IV) $Vanish^{TM}$ XT. After treatment for each group, mineral loss and Vickers surface microhardness were measured at 0, 30, 60 and 90 days after demineralization in artificial carious solution. Mineral loss was the lowest in group IV, followed by group II and group III, which showed a significant difference. The surface microhardness was the lowest in group IV, followed by group II and group III, which showed a significant difference. Through this study, group IV showed the best effect to prevent enamel demineralization around the bracket. Group III showed significant prevention of enamel demineralization compared with the control group, but the effect was less than that of the other groups.

Oxygen Permeation Properties and Phase Stability of Co-Free $La_{0.6}Sr_{0.4}Ti_{0.2}Fe_{0.8}O_{3-{\delta}}$ Oxygen Membrane

  • Kim, Ki-Young;Park, Jung-Hoon;Kim, Jong-Pyo;Son, Sou-Hwan;Park, Sang-Do
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.34-42
    • /
    • 2007
  • A perovskite-type ($La_{0.6}Sr_{0.4}Ti_{0.2}Fe_{0.8}O_{3-{\delta}}$) dense ceramic membrane was prepared by polymerized complex method, using citric acid as a chelating agent and ethylene glycol as an organic stabilizer. Effect of Ti addition on lanthanum-strontium ferrite mixed conductor was investigated by evaluating the thermal expansion coefficient, the oxygen flux, the electrical conductivity, and the phase stability. The thermal expansion coefficient in air was $21.19\;{\times}\;10^{-6}/K$ at 473 to 1,223 K. At the oxygen partial pressure of 0.21 atm ($20%\;O_2$), the electrical conductivity increased with temperature and then decreased after 973 K. The decrement in electrical conductivity at high temperatures was explained by a loss of the lattice oxygen. The oxygen flux increased with temperature and was $0.17\;mL/cm^2{\cdot}min$ at 1,223 K. From the temperature-dependent oxygen flux data, the activation energy of oxygen ion conduction was calculated and was 80.5 kJ/mol at 1,073 to 1,223 K. Also, the Ti-added lanthanum-strontium ferrite mixed conductor was structurally and chemically stable after 450 hours long-term test at 1,173 K.

A Fundamental Study on the Characteristics of Concrete with the Substitution Ratio of the Rapidly Cooled Steel Slag (급냉제강슬래그의 대체율에 따른 콘크리트의 특성에 관한 기초적 연구)

  • Kim, Nam-Wook;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.78-87
    • /
    • 2009
  • When the steel slag is utilized to the concrete as the alternative fine aggregate, its use is limited as the concrete aggregate because of expansibility caused by much quantity of free CaO. So, this study is intended to examine the characteristics of the concrete which uses the rapidly cooled steel slag whose content of free CaO is sharply reduced by rapidly cooling the steel slag as the fine aggregate. Accordingly, by comparing and considering the results of the concrete slump loss test with the different substitution ratio and fine aggregate ratio of rapidly cooled steel slag, hydration by XRD and SEM analysis, compressive test by age, a length variation test and rapid chloride ion penetration test, the rapidly cooled steel slag's proper substitution ratio and the fine aggregate ratio was derived.

Development of a Wide Dose-Rate Range Electron Beam Irradiation System for Pre-Clinical Studies and Multi-Purpose Applications Using a Research Linear Accelerator

  • Jang, Kyoung Won;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Lee, Sang Jin;Kim, Jung Kee;Moon, Young Min;Kim, Jin Young;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.31 no.2
    • /
    • pp.9-19
    • /
    • 2020
  • Purpose: This study aims to develop a multi-purpose electron beam irradiation device for preclinical research and material testing using the research electron linear accelerator installed at the Dongnam Institute of Radiological and Medical Sciences. Methods: The fabricated irradiation device comprises a dual scattering foil and collimator. The correct scattering foil thickness, in terms of the energy loss and beam profile uniformity, was determined using Monte Carlo calculations. The ion-chamber and radiochromic films were used to determine the reference dose-rate (Gy/s) and beam profiles as functions of the source to surface distance (SSD) and pulse frequency. Results: The dose-rates for the electron beams were evaluated for the range from 59.16 Gy/s to 5.22 cGy/s at SSDs of 40-120 cm, by controlling the pulse frequency. Furthermore, uniform dose distributions in the electron fields were achieved up to approximately 10 cm in diameter. An empirical formula for the systematic dose-rate calculation for the irradiation system was established using the measured data. Conclusions: A wide dose-rate range electron beam irradiation device was successfully developed in this study. The pre-clinical studies relating to FLASH radiotherapy to the conventional level were made available. Additionally, material studies were made available using a quantified irradiation system. Future studies are required to improve the energy, dose-rate, and field uniformity of the irradiation system.

Synthesis of $LiCoO_{2}$ powders from precursors prepared by precipitation process

  • Park, Cheong-Song;La, Jung-In;Kim, Do-Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.87-90
    • /
    • 2002
  • $LiCoO_{2}$ powders were synthesized at various temperatures using lithium hydroxide and cobalt hydroxide as precursors prepared by precipitation process and freeze-drying. In this study, the$LiCoO_{2}$ samples were synthesized via a solid state reaction with various LiOH concentration between 10 % and 30 % excess. And $LiCoO_{2}$powders were calcined at 600~$800^{\circ}C$ in a short time. Measurements of XRD and SEM were performed to characterize the properties of the prepared materials. The effect of amount of Li ions on the structural change in powder has been examined using the XRD analysis. For the not added excess of LiOH, CoOOH phase presented in the XRD pattern of $LiCoO_{2}$ due to loss of Li ions during firing. The morphology and particle size of the powders were examined using SEM. The obtained powders are high temperature-$LiCoO_{2}$HT-LiCoO$_{2}$) and homogeneous with the range of grain size in the order of hundreds of nanometers. The effects of variation of LiOH concentration on the structural change in powder were investigated using the Rietveld analysis. As an analysis result, c/a is constant by 4.99 on all occasions. Finally, the structure of HT-$LiCoO_{2}$ was simulated by the commercial software $Creius^{2}$(Molecular Simulations, Inc.) from the results of Rietveld analysis.

Synthesis and Luminescence Properties of Tb3+-Doped K2BaW2O8 Phosphors (Tb3+ 이온이 첨가된 K2BaW2O8 형광체의 합성 및 형광특성)

  • Jang, Kyoung-Hyuk;Koo, Jae-Heung;Seo, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.489-493
    • /
    • 2012
  • Green phosphors $K_2BaW_2O_8:Tb^{3+}$(1.0 mol%) were synthesized by solid state reaction method. Differential thermal analysis was applied to trace the reaction processes. Three endothermic values of 95, 706, and $1055^{\circ}C$ correspond to the loss of absorbed water, the release of carbon dioxide, and the beginning of the melting point, respectively. The phase purity of the powders was examined using powder X-ray diffraction(XRD). Two strong excitation bands in the wavelength region of 200-310 nm were found to be due to the ${WO_4}^{2-}$ exciton transition and the 4f-5d transition of $Tb^{3+}$ in $K_2BaW_2O_8$. The excitation spectrum presents several lines in the range of 310-380 nm; these are assigned to the 4f-4f transitions of the $Tb^{3+}$ ion. The strong emission line at around 550 nm, due to the $^5D_4{\rightarrow}^7F_5$ transition, is observed together with weak lines of the $^5D_4{\rightarrow}^7F_J$(J = 3, 4, and 6) transitions. A broad emission band peaking at 530 nm is observed at 10 K, while it disappears at room temperature. The decay times of $Tb^{3+}$ $^5D_4{\rightarrow}^7F_5$ emission are estimated to be 4.8 and 1.4 ms, respectively, at 10 and 295 K; those of the ${WO_4}^{2-}$ exciton emissions are 22 and 0.92 ${\mu}s$ at 10 and 200 K, respectively.

Synthesis and Characterization of Hollow Silicon-Carbon Composites as a Lithium Battery Anode Material

  • Han, Won-Kyu;Ko, Yong-Nam;Yoon, Chong-Seung;Choa, Yong-Ho;Oh, Sung-Tag;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.517-521
    • /
    • 2009
  • Si-C composite with hollow spherical structure was synthesized using ultrasonic treatment of organosilica powder formed by hydrolysis of phenyltrimethoxysilane. The prepared powder was pyrolyzed at various temperatures ranging from 900 to 1300 $^{\circ}C$ under nitrogen atmosphere to obtain optimum conditions for Li-ion battery anode materials with high capacity and cyclability. The XRD and elemental analysis results show that the pyrolyzed Si/C composite at 1100 $^{\circ}C$ has low oxygen and nitrogen levels, which is desirable for increasing the electrochemical capacity and reducing the irreversible capacity of the first discharge. The solid Si-C composite electrode shows a first charge capacity of $\sim$500 mAhg$^{-1}$ and a capacity fade within 30 cycles of 0.93% per cycle. On the other hand, the electrochemical performance of the hollow Si-C composite electrode exhibits a reversible charge capacity of $\sim$540 mAhg$^{-1}$ with an excellent capacity retention of capacity loss 0.43% per cycle up to 30 cycles. The improved electrochemical properties are attributed to facile diffusion of Li ions into the hollow shell with nanoscale thickness. In addition, the empty core space provides a buffer zone to relieve the mechanical stresses incurred during Li insertion.

Distribution of Metallic Elements Contamination in River Deposits and Farmland in the Vicinity of an Abandoned Korean Mine (폐광산 인근 농경지 및 하천 퇴적토의 중금속 오염 특성)

  • Lee, Hwan;Lee, Yoonjin
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.133-145
    • /
    • 2020
  • Soil in mine waste-rock fields, and at the pithead, sediments and farmlands around an abandoned mine in the Chungcheong Province of South Korea were investigated to assess the distribution of metallic elements and to understand the scope of the pollution. Reddening was observed from the mine up to a distance of 61 m. Losses of waste rock around the mine were assessed over a section of 1800 ㎥. Yellowish precipitates on the bottom of a stream were identified as ferrihydrite and goethite. For anions, a mean sulfate ion level over 773.6 mg/L was found during August in the river water samples. Mine drainage at the site was shown to have a pH of 4.9 and a sulfate concentration of 1557.8 mg/L during the August rainy season. A possible cause of the metallic element contamination in the mine is waste-rock loss, because mine waste-rock is located on the slope in this area. In conclusion, the total soil area to be treated, based on the amount that exceeded the recommended Korean soil pollution levels, was assessed to be 10,297 ㎡.

VITAMIN D-RESISTANT RICKETS : A CASE REPORT (비타민 D 저항성 구루병 환아의 치험례)

  • Kim, So-Jung;Park, Jae-Hong;Kim, Kwang-Chul;Choi, Sung-Chul
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.6 no.1
    • /
    • pp.10-14
    • /
    • 2010
  • Vitamin D-resistant rickets(VDRR) is hereditary disease manifesting marked hypophosphatemia caused by renal tubular loss of phosphate into urine and an associated decrease in the calcium and phosphorous ion product. VDRR is identified by clinical symptoms, such as in the limbs, gait disturbance, dwarfism, familial occurrence, bowlegs, and knock-knees, as well as by laboratory findings. Dental findings are enlarged chambers and extension of the pulp horns into the cusp tips in both the primary and the permanent dentition in contrast to the vitamin D-deficient rickets. The major oral manifestations are multiple spontaneous abscesses in a caries-free dentition. We reported the clinical features and treatment of a 6-year-old boy with vitamin D-resistant rickets referred to the department of pediatric dentistry in Kyung Hee University for multiple spontaneous periapical abscesses and gingival fistula without severe dental caries.

  • PDF