• Title/Summary/Keyword: ion filter

Search Result 191, Processing Time 0.026 seconds

CAPTCHA Analysis using Convolution Filtering (Convolution Filtering을 이용한 캡차 분석)

  • Kim, Keun-Young;Shin, Dong-Oh;Lee, Kyung-Hee;Nyang, Dae-Hun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1129-1138
    • /
    • 2014
  • CAPTCHA is a technique which distinguishes human and machine using what human can judge easily but machine can't. Though Text-based-CAPTCHA has been widely used and can be implemented easily, it is less security than other CAPTCHAs such as image-based, or audio-based CAPTCHAs. To enhance the security of text-based CAPTCHA, many techniques have been developed. One of them is making CAPTCHA recognized hard using complex background or noise. In this paper, we introduce how to apply convolution filtering effectively to attack CAPTCHA and actually analyze Naver's CAPTCHA which has been used for joining a cafe with this method.

A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using a Deep Neural Network (딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법)

  • Khan, Asad;Ko, Young-Hwi;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • For the safe and reliable operation of lithium-ion batteries in electric vehicles or energy storage systems, having accurate information of the battery, such as the state of charge (SOC), is essential. Many different techniques of battery SOC estimation have been developed, such as the Kalman filter. However, when this filter is applied to multiple batteries, it has difficulty maintaining the accuracy of the estimation over all cells owing to the difference in parameter values of each cell. The difference in the parameter of each cell may increase as the operation time accumulates due to aging. In this paper, a novel deep neural network (DNN)-based SOC estimation method for multi-cell application is proposed. In the proposed method, DNN is implemented to determine the nonlinear relationships of the voltage and current at different SOCs and temperatures. In the training, the voltage and current data obtained at different temperatures during charge/discharge cycles are used. After the comprehensive training with the data obtained from the cycle test with a cell, the resulting algorithm is applied to estimate the SOC of other cells. Experimental results show that the mean absolute error of the estimation is 1.213% at 25℃ with the proposed DNN-based SOC estimation method.

Remaining Useful Life Prediction of Li-Ion Battery Based on Charge Voltage Characteristics (충전 전압 특성을 이용한 리튬 이온 배터리의 잔존 수명 예측)

  • Sim, Seong Heum;Gang, Jin Hyuk;An, Dawn;Kim, Sun Il;Kim, Jin Young;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.313-322
    • /
    • 2013
  • Batteries, which are being used as energy sources in various applications, tend to degrade, and their capacity declines with repeated charging and discharging cycles. A battery is considered to fail when it reaches 80% of its initial capacity. To predict this, prognosis techniques are attracting attention in recent years in the battery community. In this study, a method is proposed for estimating the battery health and predicting its remaining useful life (RUL) based on the slope of the charge voltage curve. During this process, a Bayesian framework is employed to manage various uncertainties, and a Particle Filter (PF) algorithm is applied to estimate the degradation of the model parameters and to predict the RUL in the form of a probability distribution. Two sets of test data-one from the NASA Ames Research Center and another from our own experiment-for an Li-ion battery are used for illustrating this technique. As a result of the study, it is concluded that the slope can be a good indicator of the battery health and PF is a useful tool for the reliable prediction of RUL.

Optical properties of $SiO_2$ and $TiO_2$ thin films deposited by electron beam process with and without ion-beam source (전자빔 증착시 이온빔 보조증착 장비의 사용에 따른 $SiO_2 & TiO_2$ 박막의 광학적 특성)

  • Song, M.K.;Yang, W.S.;Kwon, S.W.;Lee, H.M.;Kim, W.K.;Lee, H.Y.;Yoon, D.H.;Song, Y.S.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.4
    • /
    • pp.145-150
    • /
    • 2007
  • The $SiO_2$ and $TiO_2$ thin films for the multilayer interference filter application were manufactured by electron beam process. In case of electron beam process with ion source, the anode current was controlled by gas volume ratio of $O_2$ and Ar. Substrate temperature of electron beam deposition without ion source was increased from 100 to $250^{\circ}C$ with $50^{\circ}C$ increment. The surface roughness values of $SiO_2$ thin films was most low value at $200^{\circ}C$ substrate temperature and 0.2 A anode current respectively. And the surface roughness values of $TiO_2$ thin films was most low value at room temperature and 0.2 A anode current repectively. The refractive index of $SiO_2$ and $TiO_2$ thin films to be deposited with ion source was usually lower than that of thin films without ion source.

Preparation of high Purity manganese oxide by Pyrolysis of solution extracted from ferromanganese dust in AOD process

  • Lee, Gye-Seung;Song, Young-Jun;Kim, Mi-Sung;Shin, Kang-Ho;Cho, Dong-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.409-412
    • /
    • 2001
  • The high purity manganese oxides were made from the dust, generated in AOD process that produces a medium-low carbon ferromanganese and collected in the bag filter. Manganese oxide content in the dust was about 90%, and its phase was confirmed as Mn₃O₄. In the extraction of manganese, because of remaining amorphous MnO₂, the dust was reduced to MnO by roasting with charcoal. The pulp density of the reduced dust can control pH of the solution more than 4 and then Fe ion is precipitated to a ferric hydroxide. Because a ferric hydroxide co precipitates with Si ion etc, Fe, Si ion was removed f개m the solution. Heating made water to be volatized and nitrates was left in reactor Then nitrates were a liquid state and stirring was possible. Among the nitrates in reactor, only the manganese nitrate which have the lowest pyrolysis temperature pyrolyzed into β-MnO₂powder and NO₂(g) at the temperature less than 200℃. When the pyrolysis of manganese nitrate has been completed about 90%, injection of water stopped the pyrolysis. Nitrates of impurity dissolved and the spherical high purity β-MnO₂powders were obtained by filtering and washing. Mn₂O₃or Mn₃O₄ powder could be manufactured from β-MnO₂powder by controlling the heating temperature. Lastly, a manufactured manganese oxide particle has 99.97% purity.

  • PDF

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

GC/MS and its applications for the analysis of cosmetic produtcts (GC/MS와 화장품 분석의 응용)

  • 노경원
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-19
    • /
    • 1993
  • Gas chromatography serves to separate the mixtures into its components, and mass spectrometer is used to analyzing of unknown compounds. But there are many problems the identification of horn compounds using by GC only. As this reason GC/MS a very powerful analyzing technique. Mass spectrometer consists of 1) inlet stem 2) ion source 3) Bass filter 4) detectors and 5) data system. There are two analyzing modes in the GC/MS, those are scan and SIM(selected ion mom toping) modes. Scan mode is used when analyzing unknown compounds and SIM mode al lows the mass spectrometer to detect specific compound with very high sensitivity. As GC/MS applications for the analysis of cosmetic products, volatile compounds in lotion, earn foundation and hair color, and carbon distribution of fatty acids in soap were performed. Also as a new sample pre-treatment technique, head space sampler/GC/MS introduced in order to analyze the volatile compounds in a toothpaste.

  • PDF

Preliminary study for the development of radiation safety evaluation methodology for industrial kV-rated radiation generator facilities

  • Hye Sung Park ;Na Hye Kwon ;Sang Rok Kim ;Hwidong Yoo;Jin Sung Kim ;Sang Hyoun Choi;Dong Wook Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3854-3859
    • /
    • 2023
  • Background: This study aims to develop an evaluator that can quickly and accurately evaluate the shielding of low-energy industrial radiation generators. Methods: We used PyQt to develop a graphical user interface (GUI)-based program and employed the calculation methodology reported in the National Council on Radiation Protection and Measurements (NCRP)-49 for shielding calculations. We gathered the necessary factors for shielding evaluation using two libraries designed for Python, pandas and NumPy, and processed them into a database. We verified the effectiveness of the proposed program by comparing the results with those from safety reports of six domestic facilities. Results: After verifying the effectiveness of the program using the NCRP-49 example, we obtained an average error rate of 1.73%. When comparing the facility safety report and results obtained using the program, we found that the error rate was between 1.09% and 6.51%. However, facilities that did not use a defined shielding methodology were underestimated by 31.82% compared with the program (the final barrier thickness satisfied the shielding standard). Conclusion: The developed program provides a fast and accurate shielding evaluation that can assist personnel that work in radiation generator facilities and government officials in reviewing safety.

The Removal Characteristics of THM Formation Potential According to the Changes of Bromide Concentration of Influent Water in BAC Process (생물활성탄 공정에서 계절별 유입수의 $Br^-$ 농도변화에 따른 THM 생성능 구성종별 제거 특성)

  • Son, Hee-Jong;Yoo, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.378-381
    • /
    • 2009
  • The purpose of this research is the evaluation of removal efficiency of THMFP in BAC. The changes of four types of THMFP and total THMFP were examined in the influent and effluent of BAC filter from March to December in 2008. It turned out that the amounts of brominated THMFP were obviously higher in winter and autumn compared to the spring and summer, which also resulted in an increase of the total-THMFP levels during winter and autumn. In addition, long-term running of BAC filter shows the good removal function of chloroform formation potential, but not brominated THMFP; with further bromination, this function was declined, as it shows the formation of bromoform in BAC filter during October and December. These results were caused by changing of the proportion of $Br^-$/DOC.

Possible Uses of Reclaimed Wastewater Effluent Treated Using Birm Filtration Along UF, and Analysis on Membrane Fouling (하수방류수 재이용을 위한 Birm filter + UF 적용시 용도별 사용 가능성 및 막오염 특성)

  • Jung, Jin-Hee;Lee, Seung-Chul;Sung, Nak-Chang;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1467-1474
    • /
    • 2016
  • In response to the water shortage problem, continued attempts are being made to secure consistent and reliable water sources. Among various solutions to this problem, wastewater effluent is an easy way to secure the necessary supply, since its annual output is consistent. Furthermore, wastewater effluent has the advantage of being able to serve various purposes, such as cleaning, sprinkling, landscaping, river management, irrigation, and industrial applications. Therefore, this study presents the possible use of reclaimed industrial wastewater treated with Birm filters and a UF membrane, along with an analysis on membrane fouling. The preprocessing stage, part of the reclamation process, used Birm filters to minimize membrane fouling. Since this study did not consider heavy metal levels in the treated water, the analyses did not include the criterion for irrigation water quality. However, the wastewater reclaimed by using Birm filters and a UF membrane met every other requirement for reclaimed water quality standards. This indicated that the treated water could be used for cleaning, channel flow for maintenance, recreational purposes, and industrial applications. The analysis on the fouling of the Birm filter and UF membrane required the study of the composition and recovery rate of the membrane. According to SEM and EDX analyses of the UF membrane, carbon and oxygen ion composition amounted to approximately 57%, whereas inorganic matter was not detected. Furthermore, the difference in the recovery rates of the distressed membrane between acidic and alkaline cleaning was more than ~78%, which indicated that organic rather than inorganic matter contributed to membrane fouling.