• Title/Summary/Keyword: ion exchange reaction

Search Result 372, Processing Time 0.025 seconds

Production and Characterization of Raw Starch Hydrolyzing Enzyme from Bacteria (세균에 의한 생전분 분해효소의 생성 및 특성)

  • Park, In-Shik;Nam, In;Kho, Sun-Ok;Kim, Gi-Nahm;Suh, Kyung-Soon
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.244-250
    • /
    • 1990
  • A bacterium capable of hydrotyzing raw starch was isolated from soil, which was identified as a strain of Bacillue. The effects of culture conditions and medium compositions on the enzyme production were investigated. Among tested carbon sources, soluble starch and wheat starch were most effective for the production of the enzyme, and the level of concentration for the optimal enzyme production was 0.5%. For nitrogen sources, polypeptone was best for the enzyme production, with the level of 0.5%. The enzyme was maximally produced by cultivating the organism at medium of initial pH 6.5, and temperature of $35^{\circ}C$. The enzyme was partially purified by Sepharose CL-6B gel filtration and DEAESephacel ion-exchange chromatography. The optimal pH and temperature for the enzyme reaction were 6.5 and $70^{\circ}C$, respectively. The enzyme most stable at pH 8.0, and temperature up to $60^{\circ}C$. In kinetic studies, the k, values for corn, wheat, rice and potato starch were 1.7, 1.4,2.5 and 1.090, respectively.

  • PDF

Synthesis and Characterization of Zeolite 4A on Activated Carbon Supports (활성탄 지지체상에서 제올라이트 4A 합성 및 특성)

  • Park, Jeong-Hwan;Suh, Jeong-Kwon;Jeong, Soon-Yong;Lee, Jung-Min;Doh, Myung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.204-210
    • /
    • 1997
  • Zeolite 4A-impregnated complex molecular sieve was prepared by hydrothermal reaction after aluminosilicate gel was penetrated into the pore of activated carbon granule. The crystals of zeolite 4A mainly were formed in the macropore of activated carbon, and their average diameter is $0.8{\mu}m$. The pore volume of activated carbon granule is $0.67m{\ell}/g$, and the pore volume of the sample including 21.6wt% of zeolite 4A crystal is $0.41m{\ell}/g$ decreasing the pore volume by 40% due to the crystallization of zeolite 4A crystals on the internal surface of activated carbon. The calcium ion exchange capacity of zeolite 4A-impregnated sample is 320mg $CaCO_3/g$ zeolite, and this value is almost the same as that of zeolite 4A powder. The crystal of zeolite 4A was not separated from the support of activated carbon granule in the course of ultrasonic dispersion. The adsorption isotherm of water on zeolite 4A-impregnated sample shows the intermediate shape between types, I and III. In addition, zeolite 4A-impregnated sample shows the hydrophilic and hydrophobic properties simultaneously.

  • PDF

Purification and Characterization of β-Lactamase Secreted from Bacillus sp. J105 Strain having β-Lectam Antibiotics Resistance. ((β-lactam계 항생물질 저항성을 지닌 Bacillus sp. J105 균주로부터 분비되는 베타 락탐 분해효소의 정제 및 특성)

  • Cho, Kyeong-Soon;Kang, Byoung-Won;Seo, Min-Jeong;Lee, Young-Choon;Lee, Jai-Heon;Joo, Woo-Hong;Choi, Yung-Hyun;Lim, Hak-Seob;Kim, Jeong-In;Seo, Kwon-Il;Jeong, Yong-Kee
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.845-851
    • /
    • 2008
  • ${\beta}-Lactamase$, secreted from Bacillus sp. J105 strain was purified to a single band on SDS-PAGE by ammonium sulfate precipitation, ion exchange column chromatography and gel-filtration. The molecular weight of the purified enzyme was 31 kDa on SDS-PAGE and its isoelectric point was 7.35. Optimal pH and temperature for enzymatic reaction were 5 and $40^{\circ}C$, respectively. As a result of total amino acid composition analysis of the purified enzyme, Gly and Ala were occupied 14.1 and 13.3 mole %, respectively. Km and Vmax value of purified enzyme were 1.33 mM and 0.36 mM/ml using ampicillin as a substrate, respectively.

Improvement of Oxidative Stability for Non-fluorinated Membranes Prepared by Substituted Styrene Monomers (스티렌 유도체를 이용한 비불소계 고분자 전해질막의 산화적 안정성 개선)

  • Moon, Seung-Hyeon;Woo, Jung-Je;Fu, Rong-Qiang;Seo, Seok-Jun;Yun, Sung-Hyun
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.294-301
    • /
    • 2007
  • To improve oxidative stability of non-fluorinated styrene-based polymer electrolyte membranes, copolymerized membranes were prepared using styrene derivatives such as p-methylstyrene, t-butylstyrene, and ${\alpha}-methylstyrene$ by monomer sorption method. Prepared membrane was characterized by measurement of weight gain ratio, water content, ion-exchange capacity, proton conductivity, and oxidative stability under the accelerated condition. It was found that each step of monomer sorption method including sorption, polymerization and sulfonation could be affected by the properties and the structures of styrenederivatives. Due to difficulty of polymerization, ${\alpha}$-methylstyrene was copolymerized with styrene or p-methylstyrene. Prepared membrane using ${\alpha}-methylstyrene$ and styrene showed higher performance and stability comparing to copolymerized membrane with styrene. However, copolymerized membranes with ${\alpha}-methylstyrene$ did not showed much improved oxidative stability comparing to styrene membrane due to their lower molecular weight. The t-butylstyrene membrane showed a low performance due to substituted bulky-butyl group which prevents sorption and sulfonation reaction. However, copolymerized t-butylstyrene membranes with p-methylstyrene showed good performance and much improved stability than the styrene membranes.

Preparation and Characterization of Proton Conducting Crosslinked Membranes Using Polymer Blends (폴리머 블렌딩을 이용한 수소 전도성 가교형 막의 제조와 그 특성)

  • Kim, Jong-Hak;Lee, Do-Kyoung;Choi, Jin-Kyu;Seo, Jin-Ah;Roh, Dong-Kyu
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.311-317
    • /
    • 2007
  • Proton conducting crosslinked membranes have been prepared by polymer blending, which consist of poly(vinyl alcohol-co-ethylene) (PVA-co-PE) and poly(styrene sulfonic acid-co-maleic acid) (PSSA-co-PMA) at 50 : 50 wt ratio. Two kinds of PSSA-co-PMA copolymer with 3 : 1 and 1 : 1 the molar ratio of PSSA to PMA wereused as a proton conducting source. The ethylene content of PVA-co-PE was also changed as 0, 27 and 44 mol%. The membranes were thermally crosslinked via the esterification reaction between -OH of PVA and -COOH of PMA, as demonstrated by FT-IR spectroscopy (PVA-co-PE)/(PSSA-co-PMA) membranes with 3 : 1 the molar ratio of PSSA to PMA showed higher ion exchange capacity (IEC), lower water uptake and higher proton conductivity than those with 1 : 1 molar ratio. As the PE concentration increased, the IEC values, water uptake and proton conductivities decreased continuously. These properties were elucidated in terms of competitive effect between the concentration of sulfonic acid, hydrophilicity and the crosslinked structure of membranes.

A Study on the Nitrate Removal in Water by Chelating Bond of Calcium Alginate (Calcium Alginate의 킬레이트 결합을 이용한 수중의 질산성 질소 제거에 관한 연구)

  • Kim, Tae Kyeong;Song, Ju Young;Kim, Jong Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.795-801
    • /
    • 2016
  • This study is on the denitrification process using the sodium alginate and $CaCl_2$ as a flocculant. Removal techniques of nitrate nitrogen from waste water are reverse osmosis, ion exchange, electro dialysis and biological method etc. We tried to remove nitrate nitrogen with flocculation and sedimentation method in the present study. Calcium alginate is expected to form a chelate bond with nitrate nitrogen in the solution. So the effects of flocculantt component, flocculation reaction time, molar ratio of the flocculant, flocculant injection rate are studied to determine the best removal rate of nitrate nitrogen. In addition, we tried to determine the nitrate nitrogen removal mechanism by analyzing the structure and component ratio of the configuration after the agglutination precipitate by FE-SEM and EDS. As a result, the nitrate nitrogen removal mechanism is turned out to form calcium-nitro-alginate, and the best mole ratio of flocculating agent is 1 : 1, the injection rate of the flocculant was up to 2%, the removal rate of the nitrate nitrogen to be 56.7% in the synthetic wastewater.

Purification and Characterization of Chinese Cabbage Pectinesterase (배추 펙틴에스테라제의 정제 및 특성)

  • Ko, Young-Hwan;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.235-241
    • /
    • 1984
  • Two fractions of pectinesterase from Chinese cabbage were isolated by ammonium sulfate fractionation, ion exchange chromatography on DEAE-cellulose and Sephadex G-150 gel filtration. The fraction F-A and F-B were purified approximately 340- and 10-fold. The similar salt effects and pH optima (pH 7.5-8.0) were obtained for the two pectinesterase fractions. The maximum activity of both two. fractions were obtained at 20-50mM of divalent rations and at 250mM of monovalent rations. The apparent Michaelis constant of the F-A was 0.01% for citrus pectin. The temperature optima for F-A and F-B were $48^{\circ}$ and $55^{\circ}C$, respectively and both fractions were stable in the region of pH 5.0-8.0 at room temperature. The thermal inactivation of the two fractions followed the first order reaction kinetics. From D and Z-values obtained the thermal resistance of the two fractions were characterized.

  • PDF

Synthesis of Na-A Type of Zeolite from Funnel-Glass Waste (브라운관의 후면유리 폐기물을 이용한 제올라이트 합성)

  • 장영남;배인국;채수천;류경원
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.167-173
    • /
    • 2001
  • Through alkaline hydrothermal activation processes, Na-A type zeolite was synthesized as a single phase with funnel-glass waste from a television tube factory. The autoclaving was performed in a closed teflon vessel in the range of 80~95$^{\circ}$C. The silica-rich solution as a starting material was hydrothermally synthesized with quartz in IN NaOH by heating 350uC under the pressure of 1,500 atm. $NaAlO_2$ was made from NaOH and Al(OHh by heating 95$^{\circ}$C for 2-3 hours and the molar ratios of it were $Na_2O/Al_2O_3$ = 1.4 and $H_2O/Na_2O$=8. The equi-dimensional A type zeolite (1-2 11) was formed by the simple mixing of the silica-rich solution, glass waste and $NaAlO_23$ for 1-3 hours-heating at $80^{\circ}C$. The characterization of the reaction product shows Na-A as a single phase. The synthesized zeolite has cuba-dodecahedral form and $Ca^{2+}$ ion exchange capacity of the Na-A was in the range of 215-220 mequiva1entilOO g.

  • PDF

Competitive Adsorption of Multi-species of Heavy Metals onto Sandy Clay Loam and Clay Soils (사질식양토와 식토에서 중금속 이온의 다중 경쟁 흡착)

  • Chung, Doug Y.;Noh, Hyun-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.238-246
    • /
    • 2005
  • We conducted this investigation to observe competitive adsorption phenomena among the heavy metals onto the available sorption sites of soil particle surfaces in sandy clay loam and clay soil collected from Nonsan city, Chungnam and Yoosung, Daejeon in Korea, respectively. Polluted and contaminated soils can often contain more than one heavy metal species, resulting in competition for available sorption sites among heavy metals in soils due to complex competitive ion exchange and specific sorption mechanism. And the adsorption characteristics of the heavy metals were reported that the selectivity for the sorption sites was closely related with electropotential and electro negativity carried by the heavy metals. The heavy metals were treated as single, binary and ternary systems as bulk solution phase. Adsorption in multi-element system was different from single-element system as Cr, Pb and Cd. The adsorption isotherms showed the adsorption was increased with increasing equilibrium concentrations. For binary and ternary systems, the amount of adsorption at the same equilibrium concentration was influenced by the concentration of individual ionic species and valence carried by the respective heavy metal. Also we found that the adsorption isotherms of Cd and Pb selected in this experiment were closely related with electronegativity and ionic potential regardless number of heavy metals in solution, while the adsorption of Cr carried higher valance and lower electro negativity than Cd and Pb was higher than those of Cd and Pb, indicating that adsorption of Cr was influenced by ionic potential than by electronegativity. Therefore adsorption in multi-element system could be influenced by electronegativity and ionic potential and valance for the same valance metals and different valance, respectively. But it still needs further investigation with respect to ionic strength and activity in multi-element system to verify sorption characteristics and reaction processes of Cr, especially for ternary system in soils.

Production of Cyclodextrin Glucanotransferase from Aspergillus sp. CC-2-1 and its Characterization (Aspergillus sp. CC-2-1에 의해 생산되는 Cyclodextrin Glucanotransferase의 생산 및 특성)

  • Cho, Young-Je;Kim, Myoung-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1158-1167
    • /
    • 2000
  • To produce ${\beta}-cyclodextrin({\beta}-CD)$, a cyclodextrin glucanotransferase(CGTase) producing Aspergillus sp. CC-2-1 was isolated from soil. The enzyme was purified and its enzymological characteristics were investigated. It was found that production of CGTase reached to the maximum when the wheat bran medium containing 0.1% albumin, 2% $(NH_4)_2S_2O_8$, 2% soluble starch and 0.2% $KH_2PO_4$ was cultured for 5 days at $37^{\circ}C$. The purity of CGTase was increased by 13.14 folds after DEAE-cellulose ion exchange chromatography and Sephadex G-100, G-150 gel filtration and the specific activity was 172.14 unit/mg. Purified enzyme was confirmed as a single band by the polyacrylamide gel electrophoresis. The molecular weight of CGTase was estimated to be 27,800 by Sephadex G-100 gel filtration and SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the CGTase activity were 9.0 and $80^{\circ}C$, respectively. The enzyme was stable in pH $8.0{\sim}11.0$ at $60{\sim}80^{\circ}C$. The activity of purified enzyme was activated by $K^+,\;Cu^{2+}$ and $Zn^{2+}$. The activity of the CGTase was inhibited by the treatment with 2,4-dinitrophenol and iodine. The result suggests that the purified enzyme has phenolic hydroxyl group of tyrosine, histidine imidazole group and terminal amino group at active site. The reaction of this enzyme followed typical Michaelis-Menten kinetics with the $K_m$ value of 18.182 g/L with the $V_{max}$ of 188.68 ${\mu}mole/min$. The activation energy for the CGTase was calculated by Arrhenius equation was 1.548 kcal/mol.

  • PDF