• Title/Summary/Keyword: ion complex

Search Result 910, Processing Time 0.026 seconds

Salphen H2 as a Neutral Carrier for the Uranyl Ion-Selective PVC Membrane Sensor

  • Kim, Dong-Wan;Park, Kyeong-Won;Yang, Mi-Hyi;Kim, Jin-eun;Lee, Shim-Sung;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.899-902
    • /
    • 2006
  • The complexation of N,N'-4,5-(ethylenedioxy)benzenebis(salicylideneimine), (salphen$H_2$) with uranyl ion was studied in acetonitrile solution spectrophtometrically, and the formation constant of the resulting 1 : 1 complex was evaluated. The salphen$H_2$ ligand was used as an ionophore in plasticized poly(vinyl chloride) (PVC) matrix membrane sensor for uranyl ion. The prepared sensors exhibited a near Nernstian response, 28.0-30.9 mV/decade for uranyl ion over the concentration range $1.0\;{\times}\;10^{-2}$ to $1.0\;{\times}\;10^{-6}$M with a limit of detection of $3.2\;{\times}\;10^{-7}$ M. The proposed electrode could be used at a working pH range of 1.5 - 4.0.

A New Approach to Surface Imaging by Nano Secondary Ion Mass Spectrometry

  • Hong, Tae-Eun;Byeon, Mi-Rang;Jang, Yu-Jin;Kim, Jong-Pil;Jeong, Ui-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.105.1-105.1
    • /
    • 2016
  • Many of the complex materials developed today derive their unique properties from the presence of multiple phases or from local variations in elemental concentration. Simply performing analysis of the bulk materials is not sufficient to achieve a true understanding of their physical and chemical natures. Secondary ion mass spectrometer (SIMS) has met with a great deal of success in material characterization. The basis of SIMS is the use of a focused ion beam to erode sample atoms from the selected region. The atoms undergo a charge exchange with their local environment, resulting in their conversion to positive and negative secondary ions. The mass spectrometric analysis of these secondary ions is a robust method capable of identifying elemental distribution from hydrogen to uranium with detectability of the parts per million (ppm) or parts per billion (ppb) in atomic range. Nano secondary ion mass spectrometer (Nano SIMS, Cameca Nano-SIMS 50) equipped with the reactive ion such as a cesium gun and duoplasmatron gun has a spatial resolution of 50 nm which is much smaller than other SIMS. Therefore, Nano SIMS is a very valuable tool to map the spatial distribution of elements on the surface of various materials In this talk, the surface imaging applications of Nano SIMS in KBSI will be presented.

  • PDF

Fabrication of Hydrophobic Surface by Controlling Micro/Nano Structures Using Ion Beam Method (이온빔을 이용한 표면 미세구조 제어를 통한 발수 표면 제조)

  • Kim, Dong-Hyeon;Lee, Dong-Hoon
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.123-128
    • /
    • 2018
  • The fabrication of a controlled surface is of great interest because it can be applied to various engineering facilities due to the various properties of the surface, such as self-cleaning, anti-bio-fouling, anti-icing, anti-corrosion, and anti-sticking. Controlled surfaces with micro/nano structures were fabricated using an ion beam focused onto a polypropylene (PP) surface with a fluoridation process. We developed a facile method of fabricating hydrophobic surfaces through ion beam treatment with argon and oxygen ions. The fabrication of low surface energy materials can replace the current expensive and complex manufacturing process. The contact angles (CAs) of the sample surface were $106^{\circ}$ and $108^{\circ}$ degrees using argon and oxygen ions, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy were used to determine the chemical composition of the surface. The morphology change of the surfaces was observed by scanning electron microscopy (SEM). The change of the surface morphology using the ion beam was shown to be very effective and provide enhanced optical properties. It is therefore expected that the prepared surface with wear and corrosion resistance might have a considerable potential in large scale industrial applications.

Capacitance Enhancement and Evaluation of Gold-Deposited Carbon Nanotube Film Ion-Selective Electrode (금 입자 증착된 탄소나노튜브의 커패시턴스 증가 및 박막형 이온 선택성 전극으로서의 특성 평가)

  • Do Youn Kim;Hanbyeol Son;Hyo-Ryoung Lim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.310-317
    • /
    • 2023
  • Small-film-type ion sensors are garnering considerable interest in the fields of wearable healthcare and home-based monitoring systems. The performance of these sensors primarily relies on electrode capacitance, often employing nanocomposite materials composed of nano- and sub-micrometer particles. Traditional techniques for enhancing capacitance involve the creation of nanoparticles on film electrodes, which require cost-intensive and complex chemical synthesis processes, followed by additional coating optimization. In this study, we introduce a simple one-step electrochemical method for fabricating gold nanoparticles on a carbon nanotube (Au NP-CNT) electrode surface through cyclic voltammetry deposition. Furthermore, we assess the improvement in capacitance by distinguishing between the electrical double-layer capacitance and diffusion-controlled capacitance, thereby clarifying the principles underpinning the material design. The Au NP-CNT electrode maintains its stability and sensitivity for up to 50 d, signifying its potential for advanced ion sensing. Additionally, integration with a mobile wireless data system highlights the versatility of the sensor for health applications.

A new approach for predicting sulfate ion concentration in concrete

  • Mohammad Ghanooni-Bagha;Mohsen Ali Shayanfar;Sajad Momen
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Aggressive environmental conditions, and especially the acidic effects of sulfate ion penetration, have reduced the lifetime of concrete structures in some areas, especially coastal and marine areas. In this research, at first, samples made of type II and V cement were kept in a solution of magnesium sulfate (MgSO4) for a period of 90 and 180 days, the change of appearance. Field Emission Scanning Electron Microscopy (FE-SEM) and X-Ray Diffraction (XRD), were used to analyze the microstructure and the complex mineral composition of the concrete after exposure to corrosive environments. Then solving the differential equation governing the sulfate ion penetration, which is based on the second Fick law, it has been tried to determine the concentration of sulfate ions inside the concrete. In the following, an attempt has been made to improve the prediction of sulfate ion concentration in concrete by using Crank's penetration equation. At the same time, the coefficient in the Crank's solution have been optimized by using the Particle Swarm Optimization (PSO algorithm). The comparison between the results shows that the values obtained from Crank's relation are closer to the experimental results than the equation obtained from Fick's second law and shows a more accurate prediction.

Preparation of Polymeric Metal Complex Containing Azo Dye Rotaxane

  • Kang, Won-Young;Park, Jong-S.
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.163-168
    • /
    • 2011
  • In this article, we synthesized an azo dye rotaxane containing bis(8-hydroxyquinoline) group and its polymeric metal complex with zinc. The azo dye rotaxane exhibits high pH sensitivity, solvatochromism and zinc (II) ion sensings in aqueous solution. These behaviors came from the tautomeric equilibrium between azo-hydrazone tautomers and the formation of extended conjugation. The structure of polymeric zinc complexed dye rotaxane was confirmed with NMR and FT-IR measurements. The existence of CD rings, provided by dye rotaxane formation, was found to be very beneficial in improving aqueous solubility of polymeric metal complex.

A Study on the Synthesis of Organophilic [TEACOOH]-Montmorillonite Intercalations Complex and its Swelling Properties

  • Cho, Sung-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.427-432
    • /
    • 2002
  • In this research an organic cation, [TEACOOH] Br, with a long alkyl chain was synthesized which will replace the metal ion between the layers of Na-Montmorillonite and an organophilic [TEACOOH]-Montmorillonite intercalations complex was formed by the cation exchange reaction between the Na-Montmorillonite and the synthesized [TEACOOH] Br. After drying of this intercalations complex in high vacuum we have tried to experiment on the probability whether it will form complexes with various swelling solutions such as dist. water, methano, ethanol, toluene, acetonitrile and propionitrile and the corresponding basal sp acings measured were $17.41{\AA}$, $31.90{AA}$, $34.42{AA}$, $30.52{AA}$ and $32.36{AA}$, respectively.

A study on the separation and recovery of uranium (우라늄의 분리 및 회수에 관한 연구)

  • 노기환;김준태
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.1
    • /
    • pp.15-23
    • /
    • 1997
  • The anionic exchange resins with the Dowex-1 and Amberlite CG-400 form were transformed into resin of sulfate and acetate acid form, respectively. The uranyl complex ions with SO$_{4}$$^{2-}$ and CH$_{3}$COO$^{-}$ were adsorbed on the anion exchange resion mentioned above, and these complex ions were eluted as mixture eluents of 0.7M HNO$_{3}$ - 0.5M NH$_{4}$NO$_{3}$ by anion exchange chromatography. The optimum adsorption conditions of uranyl anion complex ions adsorbed on the upper of the resin colmun were 1.5-2.0 ml/min of flow rates at pH 2.0 and adsorptive power of uranyl complex ion of sulfuric acid type were nearly consistent with the Caussion normal distribution curve, whereas the elution state of UO$_{2}$(Ac)$_{2}$$^{4-}$ with acetic acid type was departed. The weighing form obtained from resin of sulfuric acid and aceric acid type was U$_{3}$O$_{8}$ whose recovery was 91.7%. The possibility of recovering uranium from the monazite sulfate solution using a strong base anion resin, Amberlite CG-400(sulfate form), was successfully recovered more than 90%.

  • PDF

Isolation and Determination of Alkaloids in Coptis Rhizome by Forming Complex (착체 생성에 의한 황련 알칼로이드의 분리 및 정량)

  • 임소연;김대근;신태용;임종필;엄동옥
    • YAKHAK HOEJI
    • /
    • v.46 no.4
    • /
    • pp.226-230
    • /
    • 2002
  • The Coptis Rhizome is known for containing a number of isoquinoline type alkaloids. Berberine, coptisine and palmatine are the major constituents of alkaloids. The alkaloids were isolated and determined by forming complex from Coptis japonica (Ranunculaceae). For the determination of these alkaloids, a new spectrophotometric method was developed with a simple and selective sample clean-up using thiocyanatocobaltate[II] complex ion. The absorbance of alkaloidal complex in l,2-dichloroethane solution was measured at 625 nm. A calibration curve for the alkaloids isolated from Coptis Rhizome was linear over the concentration range of 0.2-0.3 mg/mι. The method proved to be rapid, simple and reliable for the isolation and the determination of the alkaloids in Coptis Rhizome.

Spectrophotometric determination of Cobalt by means of Co-EDTA butyl ester Complex (Ethylenediamine Tetrabutylacetate (EDTA butyl ester)에 依한 Co의 吸光光度分析)

  • Park, Doo-Won
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.4-10
    • /
    • 1966
  • A new method of cobalt determination has been developed by employing ethylenediamine tetrabutyl acetate(EDTA-butyl ester) synthesized from EDTA and Butyl alcohol. The synthesized EDTA ester dissolved in butyl alcohol extracts various metal ions from aqueous solutions. Cobaltous ion extracted into organic phase containing EDTA ester to form Co (II)-EDTA butyl ester complex is back extracted into alkaline aqueous phase forming a stable pink colored complex of Co (III). The optimum condition for spectrophotometric determination of cobalt via the new complex has been established. The absorption peak occurs at 540$m{\mu}$ and Beer's law was obeyed over the concentration range of 0∼50 ${\mu}g/ml$ of cobalt.

  • PDF