• Title/Summary/Keyword: ion complex

Search Result 908, Processing Time 0.03 seconds

The Adsorption Mechanism of Copper (II) Ion on Acrylic Fiber Treated with Hydroxylamine (하이드록실 아민으로 처리한 아크릴섬유의 구리 (II)이온의 흡착기구)

  • Chin Young-gil;Choi Suk-chul
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.12 no.1 s.26
    • /
    • pp.27-35
    • /
    • 1988
  • In order to investigate a practical application of the fibrous adsorbent to heavy metal ions, acrylic fibers were treated with the hydroxylamine solution that was producted by hydroxylamine hydrochloride and potasium hydroxide in a condition of strong alkaline and $70^{\circ}C$. The adsorption mechanism of copper(2) ion on the fibrous adsorbent, that is hydroxylaminated acrylic fibers, was studied. The adsorption of copper(2) ion was explained in terms of the activated adsorption that are formed the complex with the ligand, such as C=N, N-H, NHOH, on the surface of the adsorbent. The activation energy was evaluated to be 3.8 Kcal/mol. and the times of adsorption equilibrium was approximately 10 minutes. The uptake of copper(2) ion was found to be effected with the increase of temperatures and the pH dependence.

  • PDF

A Study of the Effects of Na Ion on Codeposition of Particles in the Formation of Electroless Ni Composite Coatings (무전해 Ni 복합도금에서 분말의 공석에 미치는 Na 이온의 영향)

  • 이원해;이승평
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.2
    • /
    • pp.101-108
    • /
    • 1989
  • Effects of Na+ ion on zeta potential of SiC and Al2O3 particles suspended in nikel sufate and nickel chloride solutions were investigated. various complexing agents for Ni2+ ion were added to electroless Ni composite bath and the effects of the complexing agents on zeta potential and codeposition of the particles from the baths were studied. It was confirmed that Na+ ion was absorbed on the particles bringing about the positive surface charge and thus they promoted the entrapment of the particles into the nickel deposit. On the basis of these results it was possible to deposit SiCc particle in nickel chloride electrolyte containing complex agent such as trisodium citrate+sodium succinate.

  • PDF

Electrical Properties of IMI-O Polymer LB Films in Complexed Metal Ion (금속이온 착체에 의한 IMI-O 고분잔 LB막의 전기적 특성)

  • Jung, Sang-Burm;Yoo, Seung-Yeop;Park, Jae-Chul;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1519-1521
    • /
    • 1997
  • In this paper, poly (N-(2-4-imidazolyl) ethyl) maleimide-alt-1-octadecene (IMI-O) polymer which can complex metal ion was used to confirm the possibility of molecular device made by Langmuir-Blodgett method. Metal/Insulator/Metal (MIM) device was fabricated for investigation of electric properties. In the ${\pi}$-A isotherm, surface pressure at collapse point was different as to the molecular weight of metal ion complexed respectively, In I-V characteristics, currents of MiM devices were different at the same voltage. It was thought that phenomena was occurred by interaction between function group and metal ion.

  • PDF

Fast Protein Staining in Sodium Dodecyl Sulfate Polyacrylamide Gel using Counter ion-Dyes, Coomassie Brilliant Blue R-250 and Neutral Red

  • Choi, Jung-Kap;Yoo, Gyurng-Soo
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.704-708
    • /
    • 2002
  • A fast and sensitive protein staining method in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using both an acidic dye, Coomassie Brilliant Blue R-250 (CBBR) and a basic dye, Neutral Red (NR) is described. It is based on a counter ion-dye staining technique that employs oppositely charged two dyes to form an ion-pair complex. The selective binding of the free dye molecules to proteins in an acidic solution enhances the staining effect of CBBR on protein bands, and also reduces gel background. It is a rapid staining procedure, involving fixing and staining steps with short destaining that are completed in about 1 h. As the result, it showed two to fourfold increase in sensitivity comparing with CBBR staining. The stained protein bands can be visualized at the same time of staining.

The Ion Effect on Dewaterability of Alumina-Metal EDTA System

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.12 no.5
    • /
    • pp.559-564
    • /
    • 2003
  • The specific ion effects are observed in the alumina-metal EDTA(Ethylene Diamine Tetraacetic Acid) system. These effects seem to be associated with the fluidity of the metal ion in the complex. A consideration of the order of adsorption of the complexes on alumina indicates that a specific ion effect also affects the stability of the system. It is clear that EDTA and its heavy metal complexes have a significant effect on the dewaterability of alumina. These effects are not well represented by zeta potential measurements, especially for EDTA alone. With the nonspeciating complexes, though, the maximum permeability is predicted by the pH$\_$zpc/ from zeta potential measurements. At other pH value, the refiltration rate is better predicted by the state of coagulation as measured by log W.

Nitrate Ion-Selective Membrane Electrode Based on Complex of (Bakelite-A)-(2,2'-Bipyridine)-Ni(Ⅱ) Nitrate ((Bakelite-A)-(2,2'-Bipyridine)-Ni(Ⅱ) 착물의 질산이온 선택성 막전극)

  • Doo-Soon Shin;Chung Ki-Won
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.383-392
    • /
    • 1992
  • (Bakelite-A)-(2,2'-Bipyridine)-Ni(Ⅱ) Nitrate complexes were tested as ion exchanger for nitrate ion-selective electrode. The experimentally observed selectivity and electrode characteristics were relatively in good agreement with the exchanger lipophilicity in the membrane phase. Based on chemical composition, mechanisms for exchange with nitrate ion and internal electrical conduction were postulated. Analytical application to the determination of nitrate were studied.

  • PDF

Spectrophotometric Determination of Amantadine Sulfate after Ion-Pairing with Methyl Orange

  • Choi, Kyong;Choi, Jung-Kap;Yoo, Gyurng-Soo
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.285-289
    • /
    • 1991
  • A convenient spectrophotometric method was examined for the determination of amantadine sulfate (AMTS) which has no UV-VIS chromopohores. AMTS was ion-paired quantitatively with methyl orange (MO) at $70^{\circ}C$ for 30 min. The ion-paired complex was extracted with dichloromethane and the absorbance was measured at 421.5 nm. A linear relationship was observed in the range of $2.5{\times}10^{-7}\;M$ to $3.75{\times}10^{-6}\;M$ and the correlation coefficient was 0.999 (n=3). This assay method was applied to the quantification of AMTS in commercial tablet form with good recovery and high precision.

  • PDF

Evolution the surface morphology and mechanical properties of Polyimide induced by Ion Beam Irradiation

  • Ahmed, Sk. Faruque;Nho, Gun-Ho;Moon, Myoung-Woon;Han, Jun-Hyun;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.98-98
    • /
    • 2010
  • Ion beam irradiation has been extensively used for surface modification of polymers, glassy metals and amorphous and crystalline materials at micron and submicron scales. The surface structures created by exposure to an ion beam range from dots, steps and one-dimensional straight wrinkles to highly complex hierarchical undulations and ripples. In general, the morphology of these nanoscale features can be selected by controlling the ion beam parameters (e.g. fluence and acceleration voltage), making ion beam irradiation a promising method for the surface engineering of materials. In the work, we presented that ion beam irradiation results in creation of a peculiar nanoscale dimple-like structure on the surface of polyimide - a common polymer in electronics, large scale structures, automobile industry, and biomedical applications. The role of broad Ar ion beam on the morphology of the structural features was investigated and insights into the mechanisms of formation of these nanoscale features were provided. Moreover, a systematic experimental study was performed to quantify the role of ion beam treatment time, and thus the morphology, on the coefficient of friction of polyimide surfaces covered by nanostructure using a tribo-experiment. Nano-indentation experiment were performed on the ion beam treated surfaces which shows that the hardness as well as the elastic modulus of the polyimide surface increased with increase of Ar ion beam treatment time. The increased of hardness of polyimide have been explained in terms of surface structure as well as morphology changes induced by Ar ion beam treatment.

  • PDF