• 제목/요약/키워드: inviscid

검색결과 326건 처리시간 0.023초

터어보 기계(機械) 내부(內部)의 비가역(非可逆) H-S유동(流動)을 고려(考慮)한 준(準)3차원(次元) 유동해석(流動解析) (Quasi-Three Dimensional Calculation of Compressible Flow in a Turbomachine considering Irreversible H-S Flow)

  • 조강래;오종식
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.241-249
    • /
    • 1991
  • A quasi-three dimensional calculation method is presented on the basis of Wu's idea using finite element methods. In B-B flow the governing equations are cast into a single equation to overcome the restriction of the type of turbomachinery, and Kutta condition is exactly assured by introducing a combination of two kinds of stream functions. In H-S flow a dissipative force which is assumed to be opposed to the relative velocity is added to the governing equation for a consistent loss model. The entropy change along each streamline is then calculated by assuming that the dissipative force may be a force coming from laminar viscous stresses with inviscid velocity distributions. Both the flow solvers are combined to build a three-dimensional flow field through a few iterations. For an effect of the distortion of H-S flow surface the body forces are computed after each B-B flow calculation is finished. Mizuki's centrifugal impellers are tested numerically. The reliability of the numerical solution compared with experimental data is guaranteed.

  • PDF

수직수문하의 경계층흐름 (Boundary Layer Flow Under a Sluice Gate)

  • 이정열
    • 물과 미래
    • /
    • 제27권3호
    • /
    • pp.95-105
    • /
    • 1994
  • 수직수문하의 경계층 흐름(boundary layer flow)이 경계고정좌표계(Boundary- Fitted Coordinate System)에서 무작위 소용돌이 판 방법(Random Vortex Sheet Method)과 요소내 소용돌이 방법(Vortex-in-Cell Method)을 이용하여 수치계산되었다. 수치해에 의한 수문을 따라 형성된 경계층이 수축률의 실험자료와 비점성이론에 의한 그 결과의 차이를 유발하는 주원인인 것으로 보여진다. 그 동안 주원인일 것으로 믿어왔던 바닥면 경게층의 역할은 수문면의 그 것보다는 적은 것으로 수치계산되었다. 또한 차원해석을 통하여 경계층 흐름에 의한 수축율의 그 차이가 수문 길이의 평방근에 반비례하는 것으로 추정되었으며, 이는 Benjamin(1956)에 의하여 분석된 것과 결국 동일한 것임이 밝혀졌다. 수치모델과 차원해석에 따른 결과는 Benjamin(1956)에 의해 얻어진 수축률의 실허미와 비교하여 만족할 만하였다.

  • PDF

초음속 노즐을 통하는 부족팽창 제트에 관한 수치계산적 연구 (2) (Numerical Study on Under-Expanded Jets through a Supersonic Nozzle(II))

  • 김희동;신형승
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.1994-2004
    • /
    • 1996
  • Numerical calculation was applied to supersonic under-expanded jets, and compared with the results of a linear theory and other experiments. TVD difference scheme was employed to solve 2-dimensional and axisymmetric inviscid Euler equation. This paper aims to explore the effects of angle of divergence and design Mach number of nozzle on the structure of under-expanded jets. The angle of divergence was varied from 0 to 20 deg. The results show that the length of the first cell of the under-expanded jets decreases and Mach disk generates at lower nozzle pressure ratio, if the angle of divergence or design Mach number of nozzle increases. The distance from the nozzle exit to Mach disk in 2-dimensional jets becomes much larger than that of axisymmetric jets, and the widths of the jet boundary and the barrel shock wave are also larger than that of axisymmetric jets. Calculation results indicate that the configuration of the under-expanded jets is strongly dependent on the nozzle pressure ratio.

유한관내에서 축류팬 후류 및 해석 (Analysis of Wake and Noise of a Fan in Finite Duct)

  • 정기훈;최한림;나선욱;전완호;이덕주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.100-105
    • /
    • 2000
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy. and the Helmholtz-Kirchhoff BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lawson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

스플리터형 원심형 임펠러의 소음 특성에 대한 연구 (A numerical study on the acoustic characteristics of splitter type centrifugal impeller)

  • 전완호;정필중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.113-118
    • /
    • 2000
  • Centrifugal pump are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal pump noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal pump, and to calculate the effects of small vanes that are attached in original impeller-splitter impeller. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method(DVM) is used to model the centrifugal pump and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The splitter impeller changes the acoustic characteristics as well as performance. Two-splitter type impeller is good for acoustic characteristics.

  • PDF

양면에서 부분적으로 유체와 접하는 사각평판의 고유진동 (Free Vibration of a Rectangular Plate Partially in Contact with a Liquid at Both Sides)

  • 정경훈;이규만;김태완;박근배
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.123-130
    • /
    • 2008
  • An analytical method for the free vibration of a flexible rectangular plate in contact with water is developed by the Rayleigh-Ritz method. The plate clamped along the edges is partially contacted with water at both sides. It is assumed that the contained water is incompressible and inviscid. The wet mode shape of the plate is assumed as a combination of the dry mode shapes of a clamped beam. The liquid motion is described by using the liquid displacement potential and determined by using the compatibility conditions along the liquid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict excellently the fluid-coupled natural frequencies comparing with the finite element analysis result.

HyShot 스크램제트 엔진의 흡입구 유동특성 연구 (Intake Flow Characteristics of HyShot Scramjet Engine)

  • 원수희;최정열;정인석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제23회 추계학술대회 논문집
    • /
    • pp.47-52
    • /
    • 2004
  • 극초음속 스크램제트 흡입구의 설계는 다양한 공기열역학적인 현상을 수반한다. 이러한 현상은 무딘 앞전효과, 경계층 발달 문제, 천이, 점성/비점성 결합, 충격파 상호작용, 충격파 경계층 상호작용 및 유동 형상 등을 포함한다. 한정된 마하수와 고도 영역 내에서 운용되기 위해 설계되는 흡입구에서는 이러한 현상들 중 몇 가지 현상에 대한 이해가 요구된다. 본 연구에서는 HyShot 비행시험에서 발생할 수 있는 고도와 받음각 극단에서의 흡입구 성능을 연구하기 위해 몇 가지 중요한 유동 현상(점성 현상, 경계층 박리, 연소기 입구 유동 형상)들이 논의 될 것이다.

  • PDF

비선형 최적화 기법에 의한 최소 조파저항 선형 생성 (Hull Form Generation of Minimum Wave Resistance by a Nonlinear Optimization Method)

  • 김희정;전호환
    • 대한조선학회논문집
    • /
    • 제37권4호
    • /
    • pp.11-18
    • /
    • 2000
  • 본 논문은 조파저항 성능 평가법을 비선형 계획법에 적용해서 선수 형상의 최적화에 응용한 연구결과이다. 조파저항은 비점성 포텐셜 유동의 가정으로 랜킨 소오스법(Rankine source method)을 이용하여 계산하였고 최적화 기법으로는 SQP(Sequential Quadratic Programming)법을 이용하였다. 선수형상의 표현과 변경은 스플라인(spline)함수를 이용하였으며 본 방법에 의하여 조파저항이 최소가 되는 선수형상의 결정이 가능하였다. 또한 마찰저항공식과 경험식으로 주어지는 형상영향계수(from factor)를 고려한 점성저항을 첨가하여 총 저항이 최소가 되는 선수 형상도 도출하여 서로 비교하였다.

  • PDF

원뿔 캐비테이터의 초공동 크기 추정 (An Estimation of the Size of Supercavities for Conical Cavitators)

  • 김형태;김병진;최정규;윤현걸
    • 대한조선학회논문집
    • /
    • 제53권2호
    • /
    • pp.92-100
    • /
    • 2016
  • A comparative method is applied to evaluate well-known formulas for estimating the size of supercavities of axisymmetric cavitators for the supercavitating underwater vehicle. Basic functional forms of these formulas are derived first for the cavity diameter from a momentum integral estimate and second for the cavity length from an asymptotic analysis of inviscid supercavity flows. The length and the diameter of axisymmetric supercavities estimated by each formula are compared, with available experimental data for a disk and a 45° conical cavitators, and also with computational results obtained by a CFD code, ‘fluent’, for conical cavitators of wide range of cone angles. Results for estimating the length and the diameter of the supercavities show in general a good agreement, which confirms the size of the supercavities for disk and conical cavitators can be estimated accurately by these simple formulas of an elementary function of cavitation number and drag coefficient of the cavitator. These formulas will be useful for from conceptual design of the cavitator to real-time control of the supercavitating underwater vehicle.

AN ENERGY-STABLE AND SECOND-ORDER ACCURATE METHOD FOR SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • KIM, JEONGHO;JUNG, JINWOOK;PARK, YESOM;MIN, CHOHONG;LEE, BYUNGJOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권2호
    • /
    • pp.93-114
    • /
    • 2019
  • In this article, we introduce a finite difference method for solving the Navier-Stokes equations in rectangular domains. The method is proved to be energy stable and shown to be second-order accurate in several benchmark problems. Due to the guaranteed stability and the second order accuracy, the method can be a reliable tool in real-time simulations and physics-based animations with very dynamic fluid motion. We first discuss a simple convection equation, on which many standard explicit methods fail to be energy stable. Our method is an implicit Runge-Kutta method that preserves the energy for inviscid fluid and does not increase the energy for viscous fluid. Integration-by-parts in space is essential to achieve the energy stability, and we could achieve the integration-by-parts in discrete level by using the Marker-And-Cell configuration and central finite differences. The method, which is implicit and second-order accurate, extends our previous method [1] that was explicit and first-order accurate. It satisfies the energy stability and assumes rectangular domains. We acknowledge that the assumption on domains is restrictive, but the method is one of the few methods that are fully stable and second-order accurate.