• Title/Summary/Keyword: inverter control system

Search Result 1,563, Processing Time 0.028 seconds

A filed operation characteristics and the controversial point of Photovoltaic power generation system (태양광 발전시스템의 현장 운전특성 및 문제점)

  • Koh, Kang-Hoon;Suh, Ki-Young;Lee, Hyun-Woo;Hong, Doo-Sung;Gang, Yeong-Cheol;U, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.381-383
    • /
    • 2000
  • The photovoltaic power generation system has a great future as clean energy instead of fossil fuel which has many environmental problems such as exhausted gas or air pollution. In a utility interactive photovoltaic generation system, a three-phase inverter is used for the connection between the photovoltaic array and the utility. This paper presents a three phase inverter for photovoltaic power system with current controller, voltage controller, PLL control system and the phase detector of interactive voltage by using da transformation. The proposed inverter system provides a sinusoidal ac current for domestic loads and the utility line with unity power factor. The results of the operated from January to October show the system characteristics.

  • PDF

A Study on the Driving Characteristics of Delta Inverter Driving Induction Motor Control System Based on the Microprocessor (마이크로 프로세서에 의한 델타인버어터 구동 유도전동기의 운전특성에 관한 연구)

  • Yoon, Byung-Do;Lee, Seung-Han
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.527-529
    • /
    • 1987
  • This paper presents a study on the driving characteristics or delta inverter driving induction motor control systems based on the microprocessor. Delta inverter is a novel circuit which uses only three power transistor. Requiring approximately hair the components or a conventional bridge inverter it therefore has a merit of coat and Simplicity. The basic operating principles of the delta inverter and conventional bridge inverter are argued, using resistive and inductive load. Sinusoidal PWM method uses to reduce the harmonic components of its output waveform to acceptable levels.

  • PDF

Predictive Instantaneous Control of inverter for UPS (UPS용 예측 순시제어형 인버터)

  • Kim, B.J.;Kim, J.H.;Cho, J.H.;Kim, J.S.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.237-239
    • /
    • 1995
  • The inverter for UPS system is required to satisfy pure sinusoidal output voltage with very low THD(Total Harmonic distortion). This paper proposes a TMS320c31 digital signal processor based predictive instantaneous control scheme of inverter. The proposed scheme is able to satisfy the conditions; high capability, high efficiency, low audible noise and robustness of inverter. The transient state characteristics of proposed inverter has been improved. in case of power failure or recovery, nonlinear load, sudden load change or parameters variations. Finally, the performance of the proposed inverter is shown and discussed by simulation and experiment.

  • PDF

Analysis of Multi Level Current Source GTO Inverter for Induction Motor Drives

  • Arase, Takayuki;Matususe, Kouki
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.535-540
    • /
    • 1998
  • This paper discusses a triple stage current source GTO inverter system for high power motor drives. The energy rebound circuit of the triple stage inverter not only controls the spike voltage of the GTO inverter but also facilitates PWM control of the thyristor rectifier operated at unity fundamental input power factor. Based on Pspice simulation and experiments, the principles and PWM pulse pattern for removing specific lower harmonics in the inverter's output current are discussed in detail.

  • PDF

Loss analysis for the novel half bridge inverter with load free-wheeling mode (부하 환류모드를 제공하는 새로운 반 브리지 인버터의 손실해석)

  • Yeon, Jae-Eul;Cho, Kyu-Min;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.216-219
    • /
    • 2003
  • The resonant inverter is widely used for induction heating, electronic ballast and supersonic motor driving circuit. In the meantime, control techniques of PWM, PFM etc.. are mainly applied to control the output power of the resonant inverter. But, in the case of using the half bridge resonant inverter, it is difficult to control the output power by PWM, because its main circuit does not provide the load free-wheeling mode. Therefore, PAM or PFM was usually applied to control output power of half bridge resonant inverter. However, PAM needs a variable DC voltage source, which makes the system structure more complex. On the other hand, in case of PFM, efficiency is declined by operation with poor power factor. This paper Proposed the novel half bridge resonant inverter which can provide the load free-wheeling mode. Also its analysis results for PWM operation with unity fundamental power factor are Presented and compared with other resonant inverters using PWM and PFM.

  • PDF

Grid Voltage Estimation Scheme without Phase Delay in Voltage-sensorless Control of a Grid-connected Inverter (전압센서를 사용하지 않는 계통연계 인버터의 제어 및 위상지연을 개선한 계통전압 추정 기법)

  • Kim, Hyun-Sou;Kim, Kyeong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.89-93
    • /
    • 2017
  • This study proposes a grid voltage estimation scheme without a phase delay in the voltage-sensorless control of a grid-connected inverter to enhance its economic feasibility, such as manufacturing cost and system complexity. The proposed scheme estimates grid voltages using a disturbance observer (DOB)-based current controller to control the grid-connected inverter without grid-side voltage sensors. The proposed voltage-sensorless control scheme can be applied successfully to grid-connected inverters, which should be operated with synchronization to the grid, considering the phase angle of the grid can be effectively detected through estimating the grid voltages by DOB. However, a problem associated with the phase delay in estimated grid voltages remains because the DOB has dynamic behavior similar to low-pass filter. Hence, the estimated grid voltages are compensated by a phase lead compensator to overcome the limitation. The effectiveness of the proposed control and estimation schemes is proven through simulations and experiments using a 2 kVA prototype inverter.

Implementation of Inverter Systems for DC Power Regeneration

  • Kim Kyung-Won;Yoon In-Sic;Seo Young-Min;Hong Soon-Chan;Yoon Duck-Yong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.126-131
    • /
    • 2001
  • This paper deals with implementation of inverter systems for DC power regeneration, which can regenerate the excessive DC power from DC bus line to AC supply in substations for traction systems. From the viewpoint of both power capacity and switching losses, a three-phase square-wave inverter system is adopted. To control the regenerated power, the magnitude and phase of fundamental output voltages should be appropriately controlled in spite of the variation of input DC voltage. Inverters are operated with modified a-conduction mode to fix the potential of each arm. The overall system consists of the line-to-line voltage and line current sensors, an actual power calculator using d-q transformation method, a complex power controller with PI control scheme, a gating signal generator for modified $\alpha-conduction\;mode\;with\;\delta\;and\;\alpha$, a DPLL for frequency followup, and power circuit.

  • PDF

Control of Z-Source MSVPWM Inverter for DGS (DGS용 Z-원 MSVPWM 인버터 제어)

  • Park, Young-San;Bae, Cherl-O;Nam, Taek-Kun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.277-278
    • /
    • 2006
  • This paper presents circuit models and control algorithms of distributed generation system(DGS) which consists of Z-type converter and PWM inverter Z-type converter which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC converter in order to step up DC-link voltage. Discrete time sliding mode control with the asymptotic observer is used for current control.

  • PDF

Multivariable State Feedback Control for Three-Phase Power Conversion systems (3상 전력변환 시스템을 위한 다변수 상태궤환 제어)

  • 이동춘;이지명
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • In this paper, a novel multivariable state feedback control with feedforward control is proposed to improve control performance of power conversion systems. The targets of the application are three-phase voltage-source PWM converter and inverter system, and current-source PWM converter and inverter system, of which equivalent circuits and models are derived and analyzed. Various simulation results are presented to verify the validity of the proposed scheme.

  • PDF

Real-Time Digital Control of PWM Inverter Empolyed DSP (DSP에 의한 PWM 인버터의 Real-Time Digital 제어)

  • Park, Ga-Woo;Min, Wan-Ki;Choi, Jae-Ho;Choi, Sung-Ryool
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.724-727
    • /
    • 1993
  • This paper is presented real-time digital control techniques of the PWM inverter for UPS. This proposed system is based on instantaneous digital control scheme which is empolyed double dead beat control and prediction method. Especially, to supply the load current from the inverter without the computation delay, the predictive methods are used to generate the load current signal. From the simulation and experimental results, it is shown that presented scheme has good performance such as very low THD of the output voltage, and good dynamic response under the nonlinear load. The experimental implementation of the system is estabilished by using the TMS320C25 DSP.

  • PDF