• Title/Summary/Keyword: inverted opal

Search Result 3, Processing Time 0.021 seconds

Synthesis of polymer - based inverted opal and transformation of its optical properties

  • Masalov, Vladimir M.;Dolganov, Pavel V.;Sukhinina, Nadezhda S.;Dolganov, Vladimir K.;Emelchenko, Gennadi A.
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • We have obtained opal-like photonic crystals based on opals and inverted opals exhibiting a shift of the selective reflection band toward longer and shorter wavelengths with respect to the diffraction band of the initial opal consisting of $SiO_2$ spheres. The contribution of frames forming three-dimensional periodic structures and that of fillers to the spectral arrangement of the diffraction bands has been determined.

Multiscale-Architectured Functional Membranes Based on Inverse-Opal Structures (멀티스케일 아키텍쳐링 기반 역오팔상 구조체 기능성 멤브레인 기술)

  • Yoo, Pil J.
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.421-431
    • /
    • 2016
  • Novel membrane technologies that harness ordered nanostructures have recently received much attention because they allow for high permeability due to their reduced flow resistance while also maintaining high selectivity due to their isoporous characteristics. In particular, the opaline structure (made from the self-assembly of colloidal particles) and its inverted form (inverse-opal) have shown strong potential for membrane applications on account of several advantages in processing and the resulting membrane properties. These include controllability over the pore size and surface functional moieties, which enable a wide range of applications ranging from size-exclusive separation to catalytically-reactive membranes. Furthermore, when combined with multiscale architecturing strategies, inverse-opal-structured membranes can be designed to have specific pores or channel structures. These materials are anticipated to be utilized for next-generation, high-performance, and high-value-added functional membranes. In this review article, various types of inverse-opal-structured membranes are reviewed and their functionalization through hierarchical structuring will be comprehensively investigated and discussed.

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang;Moon, Jun-Hyuk;Kim, Young-Kuk;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.347-358
    • /
    • 2011
  • Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.