Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.6.421

Multiscale-Architectured Functional Membranes Based on Inverse-Opal Structures  

Yoo, Pil J. (School of Chemical Engineering and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU))
Publication Information
Membrane Journal / v.26, no.6, 2016 , pp. 421-431 More about this Journal
Abstract
Novel membrane technologies that harness ordered nanostructures have recently received much attention because they allow for high permeability due to their reduced flow resistance while also maintaining high selectivity due to their isoporous characteristics. In particular, the opaline structure (made from the self-assembly of colloidal particles) and its inverted form (inverse-opal) have shown strong potential for membrane applications on account of several advantages in processing and the resulting membrane properties. These include controllability over the pore size and surface functional moieties, which enable a wide range of applications ranging from size-exclusive separation to catalytically-reactive membranes. Furthermore, when combined with multiscale architecturing strategies, inverse-opal-structured membranes can be designed to have specific pores or channel structures. These materials are anticipated to be utilized for next-generation, high-performance, and high-value-added functional membranes. In this review article, various types of inverse-opal-structured membranes are reviewed and their functionalization through hierarchical structuring will be comprehensively investigated and discussed.
Keywords
Inverse-Opal; Colloids; Self-Assembly; Multiscale Architecturing; Isoporous Membranes;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 B. Jung and N. Kim, "Preparation and characterization of microfiltration membranes for water treatment", Membr. J., 24, 50 (2014).   DOI
2 C.-H. Yun, J.-H. Kim, K. W. Lee, and S. H. Park, "Water treatment application of a large pore micro-filtration membrane and its problems", Membr. J., 24, 194 (2014).   DOI
3 T. H. Lee, H. D. Lee, and H. B. Park, "Current research trends in polyamide based nanocomposite membranes for desalination", Membr. J., 26, 351 (2016).   DOI
4 D. L. Gin and R. D. Noble, "Designing the next generation of chemical separation membranes", Science, 332, 674 (2011).   DOI
5 D. Wang, K. Li, and W. Teo, "Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes", J. Membr. Sci., 163, 211 (1999).   DOI
6 N. A. Hashim, F. Liu, M. M. Abed, and K. Li, "Chemistry in spinning solutions: Surface modification of PVDF membranes during phase inversion", J. Membr. Sci., 415, 399 (2012).
7 G. R. Guillen, Y. Pan, M. Li, and E. M. Hoek, "Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review", Ind. Eng. Chem. Res., 50, 3798 (2011).   DOI
8 S. Rangou, K. Buhr, V. Filiz, J. I. Clodt, B. Lademann, J. Hahn, A. Jung, and V. Abetz, "Self-organized isoporous membranes with tailored pore sizes", J. Membr. Sci., 451, 266 (2014).   DOI
9 S.-H. Kim, S. Y. Lee, S.-M. Yang, and G.-R. Yi, "Self-assembled colloidal structures for photonics", NPG Asia Mater., 3, 25 (2011).   DOI
10 J. Zhang, Z. Sun, and B. Yang, "Self-assembly of photonic crystals from polymer colloids", Curr. Opin. Colloid Interface Sci., 14, 103 (2009).   DOI
11 S. Gasser, F. Paun, A. Cayzeele, and Y. Brechet, "Uniaxial tensile elastic properties of a regular stacking of brazed hollow spheres", Scr. Mater., 48, 1617 (2003).   DOI
12 K. E. Mueggenburg, X.-M. Lin, R. H. Goldsmith, and H. M. Jaeger, "Elastic membranes of close-packed nanoparticle arrays", Nat. Mater., 6, 656 (2007).   DOI
13 E. Green, E. Fullwood, J. Selden, and I. Zharov, "Functional membranes via nanoparticle self-assembly", Chem. Commun., 51, 7770 (2015).   DOI
14 Y. Wang and F. Caruso, "Macroporous zeolitic membrane bioreactors", Adv. Funct. Mater., 14, 1012 (2004).   DOI
15 B. Gates, Y. Yin, and Y. Xia, "Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures", Chem. Mat., 11, 2827 (1999).   DOI
16 B. Mandlmeier, J. M. Szeifert, D. Fattakhova- Rohlfing, H. Amenitsch, and T. Bein, "Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal", J. Am. Chem. Soc., 133, 17274 (2011).   DOI
17 S. H. Park and Y. Xia, "Fabrication of three-dimensional macroporous membranes with assemblies of microspheres as templates", Chem. Mat., 10, 1745 (1998).   DOI
18 S. H. Park and Y. Xia, "Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores", Adv. Mater., 10, 1045 (1998).   DOI
19 S. J. Yeo, H. Kang, Y. H. Kim, S. Han, and P. J. Yoo, "Layer-by-layer assembly of polyelectrolyte multilayers in three-dimensional inverse opal structured templates", ACS Appl. Mater. Interfaces, 4, 2107 (2012).   DOI
20 H. He, M. Zhong, D. Konkolewicz, K. Yacatto, T. Rappold, G. Sugar, N. E. David, J. Gelb, N. Kotwal, A. Merkle, and K. Matyjaszewski, "Threedimensionally ordered macroporous polymeric materials by colloidal crystal templating for reversible $CO_2$ capture", Adv. Funct. Mater., 23, 4720 (2013).
21 X. Wang, S. M. Husson, X. Qian, and S. R. Wickramasinghe, "Inverse colloidal crystal ultrafiltration membranes", Sep. Purif. Technol., 93, 33 (2012).   DOI
22 G. H. Choi, D. K. Rhee, A. R. Park, M. J. Oh, S. Hong, J. J. Richardson, J. Guo, F. Caruso, and P. J. Yoo, "Ag nanoparticle/polydopamine-coated inverse opals as highly efficient catalytic membranes", ACS Appl. Mater. Interfaces, 8, 3250 (2016).   DOI
23 B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, "Assembly of largearea, highly ordered, crack-free inverse opal films", Proc. Natl. Acad. Sci. U.S.A., 107, 10354 (2010).   DOI
24 Y. H. Kim, H. Kang, S. Park, A. R. Park, Y. M. Lee, D. K. Rhee, S. Han, H. Chang, D. Y. Ryu, and P. J. Yoo, "Multiscale porous interconnected Nanocolander network with tunable transport properties", Adv. Mater., 26, 7998 (2014).   DOI
25 D. K. Rhee, B. Jung, Y. H. Kim, S. J. Yeo, S.-J. Choi, A. Rauf, S. Han, G.-R. Yi, D. Lee, and P. J. Yoo, "Particle-nested inverse opal structures as hierarchically structured large-scale membranes with tunable separation properties", ACS Appl. Mater. Interfaces, 6, 9950 (2014).   DOI