Communications for Statistical Applications and Methods
/
v.27
no.6
/
pp.675-688
/
2020
In survival analysis of observational data, the inverse probability weighting method and the Cox proportional hazards model are widely used when estimating the causal effects of multiple-valued treatment. In this paper, the two kinds of weights have been examined in the inverse probability weighting method. We explain the reason why the stabilized weight is more appropriate when an inverse probability weighting method using the generalized propensity score is applied. We also emphasize that a marginal hazard ratio and the conditional hazard ratio should be distinguished when defining the hazard ratio as a treatment effect under the Cox proportional hazards model. A simulation study based on real data is conducted to provide concrete numerical evidence.
The most representative design used in clinical trials is randomization, which is used to accurately estimate the treatment effect. However, comparison between the treatment group and the control group in an observational study without randomization is biased due to various unadjusted differences, such as characteristics between patients. Propensity score weighting is a widely used method to address these problems and to minimize bias by adjusting those confounding and assess treatment effects. Inverse probability weighting, the most popular method, assigns weights that are proportional to the inverse of the conditional probability of receiving a specific treatment assignment, given observed covariates. However, this method is often suffered by extreme propensity scores, resulting in biased estimates and excessive variance. Several alternative methods including trimming, overlap weights, and matching weights have been proposed to mitigate these issues. In this paper, we conduct a simulation study to compare performance of various propensity score weighting methods under diverse situation, such as limited overlap, misspecified propensity score, and treatment contrary to prediction. From the simulation results overlap weights and matching weights consistently outperform inverse probability weighting and trimming in terms of bias, root mean squared error and coverage probability.
Journal of the Korean Data and Information Science Society
/
v.26
no.1
/
pp.217-227
/
2015
In observational study, handling confounders is a primary issue in measuring treatment effect of interest. Historically, a regression with covariate adjustment (covariate-adjusted regression) has been the typical approach to estimate treatment effect incorporating potential confounders into model. However, ever since the introduction of the propensity score, covariate-adjusted regression has been gradually replaced in medical literatures with various balancing methods based on propensity score. On the other hand, there is only a paucity of researches assessing propensity score methods compared with the covariate-adjusted regression. This paper examined the performance of propensity score methods in estimating risk difference and compare their performance with the covariate-adjusted regression by a Monte Carlo study. The study demonstrated in general the covariate-adjusted regression with variable selection procedure outperformed propensity-score-based methods in terms both of bias and MSE, suggesting that the classical regression method needs to be considered, rather than the propensity score methods, if a performance is a primary concern.
In causal analysis of high dimensional data, it is important to reduce the dimension of covariates and transform them appropriately to control confounders that affect treatment and potential outcomes. The augmented inverse probability weighting (AIPW) method is mainly used for estimation of average treatment effect (ATE). AIPW estimator can be obtained by using estimated propensity score and outcome model. ATE estimator can be inconsistent or have large asymptotic variance when using estimated propensity score and outcome model obtained by parametric methods that includes all covariates, especially for high dimensional data. For this reason, an ATE estimation using an appropriate dimension reduction method and semiparametric model for high dimensional data is attracting attention. Semiparametric method or sparse sufficient dimensionality reduction method can be uesd for dimension reduction for the estimation of propensity score and outcome model. Recently, another method has been proposed that does not use propensity score and outcome regression. After reducing dimension of covariates, ATE estimation can be performed using matching. Among the studies on ATE estimation methods for high dimensional data, four recently proposed studies will be introduced, and how to interpret the estimated ATE will be discussed.
Kang, Joseph;Chan, Wendy;Kim, Mi-Ok;Steiner, Peter M.
Communications for Statistical Applications and Methods
/
v.23
no.1
/
pp.1-20
/
2016
Causal inference methodologies have been developed for the past decade to estimate the unconfounded effect of an exposure under several key assumptions. These assumptions include, but are not limited to, the stable unit treatment value assumption, the strong ignorability of treatment assignment assumption, and the assumption that propensity scores be bounded away from zero and one (the positivity assumption). Of these assumptions, the first two have received much attention in the literature. Yet the positivity assumption has been recently discussed in only a few papers. Propensity scores of zero or one are indicative of deterministic exposure so that causal effects cannot be defined for these subjects. Therefore, these subjects need to be removed because no comparable comparison groups can be found for such subjects. In this paper, using currently available causal inference methods, we evaluate the effect of arbitrary cutoffs in the distribution of propensity scores and the impact of those decisions on bias and efficiency. We propose a tree-based method that performs well in terms of bias reduction when the definition of positivity is based on a single confounder. This tree-based method can be easily implemented using the statistical software program, R. R code for the studies is available online.
Communications for Statistical Applications and Methods
/
v.16
no.1
/
pp.103-113
/
2009
Weighting is a common form of unit nonresponse adjustment in sample surveys where entire questionnaires are missing due to noncontact or refusal to participate. A common approach computes the response weight as the inverse of the response rate within adjustment cells based on covariate information. In this paper, we consider the efficiency and robustness of nonresponse weight adjustment bated on the response propensity and predictive mean. In the simulation study based on 2000 Fishry Census in Korea, the root mean squared errors for assessing the various ways of forming nonresponse adjustment cell s are investigated. The simulation result suggest that the most important feature of variables for inclusion in weighting adjustment is that they are predictive of survey outcomes. Though useful, prediction of the propensity to response is a secondary. Also the result suggest that adjustment cells based on joint classification by the response propensity and predictor of the outcomes is productive.
Background: Rheumatoid arthritis (RA) is a systemic inflammatory disease that manifests as joint damage or athletic disability via sustained inflammation of the synovial membrane. The risk of cardiovascular disease (CVD) is higher in RA patients. This study aimed at evaluating the association between CVD comorbidities and RA by comparing a pharmacotherapy group with a non-pharmacotherapy group. Methods: Patient sample data from the Health Insurance Review and Assessment Service (HIRA-NPS-2016) were used. Inverse probability of treatment weighting (IPTW) using the propensity score was used to minimize the differences in patient characteristics. Logistic regression analysis was used to evaluate the risk of CVD comorbidities. Results: The analyses included 1,207,213 patients, of which 33,122 (2.8%) had RA. The odds ratios (OR) of CVD comorbidities were increased in RA patients; ischemic heart disease (IHD: OR 1.75; 95% CI 1.73, 1.77), cerebral infarction (CERI: OR 1.28; 95% CI 1.26, 1.30), hypertension (HTN: OR 1.44; 95% CI 1.43, 1.45), diabetes mellitus (DM: OR 2.04; 95% CI 2.03, 2.06), and dyslipidemia (DL: OR 3.49; 95% CI 3.47, 3.51). The ORs of IHD, CERI, HTN, and DM in the traditional DMARD and biologic treatment groups were decreased, compared with those in the non-pharmacotherapy group. Conclusions: Thus, CVD risk was higher in RA patients, considering age, sex, and socioeconomic status. Appropriate pharmacotherapy could decrease the risk of CVD comorbidities in RA patients.
Objective : This study analyzed the correlation between cognitive function and oral health-related quality of life (OHQoL). Methods : Demographic and clinical characteristics were extracted and utilized for subjects aged 45 years or older who participated in the 8th Korean Longitudinal Study on Aging in 2020. The dependent variable was the Geriatric Oral Health Assessment Index, and the independent variable was the level of cognitive function classified by the Mini-Mental State Examination scores. The analysis method used inverse probability of treatment weighting (IPTW). Then, the association between cognitive function and OHQoL was analyzed by multiple regression analysis. Results : Among the participants, 4,367 (71.40%) had normal cognition, 1,155 (18.89%) had moderate cognitive impairment, and 594 (9.71%) had severe cognitive impairment. As a result of analysis by applying IPTW, there was a negative correlation between the cognitive function group and OHQoL (normal vs. moderate: β = -2.534, p < .0001; normal vs. severe: β = -2.452, p < .0001). Conclusion : After propensity score matching, mild cognitive impairment showed a more negative association than severe cognitive impairment. Therefore, patients with cognitive impairment require oral health management education to improve OHQoL regardless of the level of cognitive impairment.
Unlike randomized trial, statistical strategies for inferring the unbiased causal relationship are required in the observational studies. Recently, new methods for the causal inference in the observational studies have been proposed such as the matching with the propensity score or the inverse probability treatment weighting. They have focused on how to control the confounders and how to evaluate the effect of the treatment on the result variable. However, these conventional methods are valid only when the treatment variable is categorical and both of the treatment and the result variables are directly observable. Research on the causal inference can be challenging in part because it may not be possible to directly observe the treatment and/or the result variable. To address this difficulty, we propose a method for estimating the average causal effect when both of the treatment and the result variables are latent. The latent class analysis has been applied to calculate the propensity score for the latent treatment variable in order to estimate the causal effect on the latent result variable. In this work, we investigate the causal effect of adolescents delinquency on their substance use using data from the 'National Longitudinal Study of Adolescent Health'.
Background: Depressive disorders can be categorized into daily depression and clinical depression. The experience of depressive disorder can increase health care utilization due to decreased treatment compliance and somatization. On the other hand, the clinical depression group may also experience social prejudice associated with the illness, which can limit their access to health care utilization. In terms of the significance of health care utilization as a factor in individual and social issues, this study aims to compare the health care utilization of the clinical depression group with that of the non-depressed group and the daily depression group. Methods: The analysis utilized the inverse probability of treatment weighting based on the generalized propensity score. Results: As a result of the analysis, clinical depression and daily depression were higher among women, low-income groups, individuals with low education levels, and so forth. The clinical depression group was also higher among individuals who were not economically active, did not have private health insurance, or had multiple chronic diseases. The number of outpatient department visits in the depression group was significantly higher than in the non-depressed group. In addition, the number of outpatient department visits for the clinical depression group was significantly higher than that for the daily depression group. Outpatient medical expenses were higher in the depression group than in the non-depressed group, and there was no significant difference between the clinical depression group and the daily depression group. Conclusion: Health care utilization was higher in the depression group than the non-depressed group, it was also higher in the clinical depression group than the daily depression group.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.