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Abstract

In survival analysis of observational data, the inverse probability weighting method and the Cox proportional
hazards model are widely used when estimating the causal effects of multiple-valued treatment. In this paper, the
two kinds of weights have been examined in the inverse probability weighting method. We explain the reason why
the stabilized weight is more appropriate when an inverse probability weighting method using the generalized
propensity score is applied. We also emphasize that a marginal hazard ratio and the conditional hazard ratio
should be distinguished when defining the hazard ratio as a treatment effect under the Cox proportional hazards
model. A simulation study based on real data is conducted to provide concrete numerical evidence.

Keywords: generalized propensity score, inverse probability weighting, Cox’s proportional haz-
ards model, marginal hazard ratio

1. Introduction

Randomized experiments identify the causal effects of new treatments or new drugs in medical or
pharmacological studies. However, randomly assigning treatments to experimental units may not be
possible due to ethical or operational difficulties. To estimate causal treatment effects from the data
obtained from observational studies, the covariate distributions in treatment groups should be adjusted
to be balanced, so that the treatment effects are not confounded with the effects of covariates, or pre-
treatment variables. It is not easy to adjust covariate distributions when the number of covariates is
high; however, the propensity scores proposed by Rosenbaum and Rubin (1983, RR83) can make the
required adjustment effectively. RR83 and many succeeding studies covered a two-treatment-group
case. However, there may be more than two treatment groups or levels, such as multiple doses of
a drug. For a multi-valued treatment, it is not simple to extend the analysis procedure used for a
binary treatment. Imbens (2000) extended the propensity scores of RR83 to a multi-valued treatment
called generalized propensity scores. Methods for removing the confounding effect by matching or
subclassification using generalized propensity scores were dealt with in Yang et al. (2016), and by
inverse probability weighting (IPW) in Linden et al. (2015). However, these studies handled complete
data, not right-censored data that is commonly observed in survival analyses.

This paper deals with the issue of estimating multi-valued treatment effect from the right-censored
data obtained from observational study. We focus on IPW method. Austin (2013) discussed on the
binary treatment effect using propensity scores. He compared the performance of matching, [IPW
and other methods through simulation. IPW methods are often used instead of matching when right
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censored data are given. Matching methods require a large pool of data to find pairs of units with
similar characteristics. In survival analyses that require long-term follow-ups, it is not easy to get
adequate data. The IPW method has relatively fewer problems with data size. The IPW method
has strengths when the values of treatment and covariates change over time (Robins et al., 2000);
however, this study assumes they do not depend on time. The first topic of this paper is about the
confusion on the weights used for the IPW method. The literature has different explanations for the
rationale of stabilized weights (SW) and non-stabilized weights (NSW). Second, in survival analyses
the marginal hazard ratio and the conditional hazard ratio are not properly distinguished when the
treatment effect is defined as the hazard ratio (HR). These two topics are covered in this paper. When
using the IPW method to estimate the causal effect from observational survival data, it is shown that it
is more appropriate to apply the stabilized weights. The marginal and the conditional HR are different
in meaning and values; therefore, it is emphasized that the distinction should be made.

The paper proceeds as follows. Section 2 describes the IPW method using generalized propensity
scores. It also addresses the issue of marginal and conditional HRs. In Section 3, a simulation study
based on real data clarifies the topics covered in Section 2. Section 4 summarizes the important points
and also mentions limitations when analyzing observational survival data for causal reasoning.

2. Inverse probability weighting and causal hazard ratio

To be able to estimate causal treatment effects from observational data, we need some crucial assump-
tions. To describe those assumptions some definitions come first. The observed data for each unit
i are (Y}, A;, X;), which are assumed to be independent and identically distributed for i = 1,...,n.
We denote the response by Y, the treatment by A which can take one of K possible levels, the pre-
treatment characteristics of the unit by X which can be a random vector of multiple variables (The
subscript i will be omitted when we state the general property of the variable). Before dealing with
censored data, let us first consider the complete response Y. To define the treatment effects, we follow
the counterfactual approach in Rubin (1974, 1990), who set up the framework of causal reasoning in
observational studies. We define the counterfactual of Y, denoted by Y4-,, as the value of ¥ when
A = ais ‘assigned’ to a unit. Here, ‘assigned’ means that the unit did not choose a treatment level for
itself, but rather the experimenter randomly determined the treatment level for the unit. The treatment
effect of two treatment levels a and b can be defined as

Tap = E[Yazq — Ya=p].

The mean of the difference in responses obtained when two different treatment levels are assigned to
the same unit can be defined as the treatment effect. In an observational study, if the observed value of
A of a unit is a, then Y is assumed to be equal to Y4-,, which is referred to as the stable-unit-treatment-
value assumption (Rubin, 1980).

Assumption 1. (Stable Unit Treatment Value Assumption; SUTVA) If a unit is observed to re-
ceive treatment a, the observed Y of that unit will be equal to Ya—,, that is Y = Zj-il I(A = j)Ya-;.
This assumption holds if there is no interference between units, so that the counterfactuals of each
unit do not depend on the treatment status of other units.

However, because Y for only one treatment level is observed for each unit, Y4-, — Y4, is not observed
for each unit. Since 7, = E[Ya=q] — E[Ya=p], the treatment effect can be estimated if the average of
each possible outcome, or counterfactual, can be estimated, rather than the average of the differences
between the two possible outcomes. Here the problem would be simple if the mean of the individuals
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with A = a, i.e., E[Y|A = a] equals E[Y4-,]; however, for observational studies, the treatment level A
is not randomly determined, so E[Y|A = a] is different from E[Ys-,]. That is

E[Y|A = a] = E[Ya=4|A = a] # E[Ys=].

Therefore, E[Y|A = a] — E[Y]|A = b] # 7,5. This fact means that we cannot estimate the treatment
effect with a simple estimate of the mean of observed Y by treatment level.

For causal reasoning to be possible in observational studies lacking randomization, a key assump-
tion is required for X as follows.

Assumption 2. (Weak Unconfoundedness Assumption) Y,_, [[ /(A = a)|X, that is when X is
given, counterfactual Y-, and indicator of the observed treatment level (A = a) are conditionally
independent.

A more strong assumption (Ya-i, ..., Ya=x) [[ AIX is not necessary here. Assumption 2, also
called a weak version of ‘no-unmeasured-confounders assumption’, means that the data with the same
value of X can be considered as randomized experimental data. To reveal causation rather than mere
association between the treatment A and the response Y, the effect of every confounder, the common
cause of A and Y, should be eliminated. The covariate vector X should contain all the confounders
for the Assumption 2 to be satisfied. When the dimension of X is high, the propensity score plays an
important role. For the treatment A with two levels, expressed as 0 and 1, RR83 defines the conditional
probability P(A = 1|X = x) as propensity score. Because this conditional probability is a function of
x, it is sometimes denoted as e(x). Imbens (2000) extended the propensity score into the case of two or
more treatment levels, defining P(A = a|lX = x),a = 1,2,...,K as the generalized propensity score.
The generalized propensity score is marked as e(a, x) because it is a function of the treatment level
a and covariate x. The propensity score can be seen as a special case of the generalized propensity
score; therefore, only the generalized propensity score is considered.

Assumption 3. (Overlap Assumption) For all a and x, 0 < e(a, x) < 1.

This assumption indicates that every unit has a positive chance to be in any treatment group called
an ‘overlap-of-covariate-distributions assumption’. Combining this assumption with the strong ver-
sion of Assumption 2, RR83 named it the ‘strong-ignorability assumption’. Including as many observ-
able pre-treatment variables as possible in the covariate vector X, such as demographic variables and
pre-treatment health conditions, increases the possibility of satisfying the unconfoundedness assump-
tion. However, a higher number of covariates increases the possibility that the overlap assumption
will be violated. An important characteristic of the generalized propensity score is that if Y4-, and
I(A = a) are independent when vector X is given, they are also independent when only the scalar
e(a, X) is given (Imbens, 2000).

2.1. Non-stabilized weights and stabilized weights

We examine two kinds of weights in the IPW method to estimate the causal treatment effect. The
inverse probability weights assigned to each unit are determined by the treatment level applied to the
unit and the covariate vector representing the unit characteristics. For example, the inverse probability
weight applied to a unit with A = a and X = x is 1/e(a, x). The inverse probability weight is the
reciprocal of the generalized propensity score. However, we cannot say that it is the reciprocal of
the propensity score, because if there are only two levels of treatment, the inverse probability weight
for a unit with a = 0 is 1/e(0, x) = 1/(1 — e(x)), which is not the reciprocal of the propensity score
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e(x). Since e(a,x) = P(A = alX = x) is a conditional probability for a treatment level, the inverse
probability weights are sometimes called Inverse-Probability-of-Treatment-Weights (IPTW).

The inverse probability weight w(a, x) = 1/e(a, x) become very large as e(a, x) approaches zero,
which also increases the variation of the statistics that reflect this weight. Robins et al. (2000) pro-
posed to use stabilized weights sw(a, x) = P(A = a)/e(a, x) to reduce the variation. However, there
are other ways to reduce the variation and this explanation is less convincing as to why we use stabi-
lized weights. We use a different perspective to explain the appropriate reason for the use of stabilized
weights when censored data are given.

Hirano and Imbens (2001) explained why we need inverse probability weights for binary treatment
case, which can be extended to multi-valued treatment case as follows.

i
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The second equality is established by Assumption 1, the third equality by Assumption 2, and the
fourth equality by the definition of the generalized propensity score. The above expression indicates
that if the parameter to be estimated can be expressed by the expected values of the counterfactuals,
the observed data multiplied by the inverse probability weights may be considered and analyzed as
counterfactuals.

However, if Y is censored, as in the survival analysis, the treatment effect may not be expressed
by E[Ya=4]. For the Cox proportional hazards model, which is widely used in the analysis of censored
data, the treatment effect is defined by hazard ratio. Therefore, in the case of censored data, the
validity of the inverse probability weights cannot be explained by the above results. Another rationale
for the validity of the IPW method is the balancing of covariate distributions, which can be found in
Ridgeway et al. (2014) and Li ef al. (2018). These descriptions are for the binary treatment case,
and can be extended to the multi-valued treatment case. Let fxja(xla) represent the distribution of
X when A = a, and fx(x) represent the distribution of X in the entire population that covers all the
treatment levels (If all variables in the covariate vector X are continuous, fx(x) will represent the joint
density function). Suppose we want the observed distribution fxj4 (x|a) to be unrelated to a by placing
a weight of w*(a, x) in a unit of A = g and X = x. We want the distribution of the confounders to
be irrelevant to the level of treatment and to be the same as the distribution of data obtained from the
randomized experiment. This can be expressed as

w*(a, x) fxja(xla) = fx(x), foreach a.

Here, the weighting means that a new pseudo dataset is composed, in which the number of ob-
servations increases or decreases by the weights. However, this is different from multiplying each
observation by weights as in (2.1). We can now derive from the above expression that the weights
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w*(a, x) should be the stabilized weights sw(a, x).

Sx(x)
Sfxia(xla)
B Sx(x)
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w*(a, x) =

If non-stabilized weights w(a, x) = 1/e(a, x) is used instead of sw(a, x), the covariate distribution of
the pseudo dataset becomes

fx(x)

PA=a) o fx(x),

w(a, x) fxia(xla) =
at treatment a. This fact means that knowing the treatment level does not change the covariate distribu-
tion, so the treatment and covariates become independent. The balancing of the covariate distributions
in treatment groups is achieved even if non-stabilized weights are used.

Now we examine the size of pseudo dataset formed by two types of weights, the stabilized and the
non-stabilized weights. The non-stabilized weights 1/e(a, x) is always greater than 1 because e(a, x)
is greater than O and less than 1. However, the stabilized weights may be less than 1. The use of NSW
increases the size of pseudo dataset by K times over a given sample size on average, which can be
seen as follows.

1 K 1
A, X)) [f(A|X):| a=1 f Sax(a, x)/fX(x)fA,X(a, O

= fox(x)dx: Zl
- K.

A slight modification of the above derivation can show that E[sw(A, X)] = 1. Therefore, > | sw;(a;, x;)
is n on average. If we use SW, the size of the pseudo dataset is equal to the size of the original sample
size on average. Xu et al. (2010) showed that }}*, w(a;, x;) = 2n and )", sw(a;, x;) = n for a binary
treatment case when X is a single categorical variable. Xu et al. (2010) demonstrated by simulations
that the sum of the weights varies from data to data when X contains a continuous variable, but did
not prove the average relationship.

Pseudo data sets formed by the two weights are not only different in size, but also different in
proportions of treatment levels. The proportion of A = a in the pseudo dataset obtained by the SW is,
because the distribution of X in the area of A = a is fx(x),

f fx(x)dx = P(A = a).
A=a
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So, in pseudo dataset obtained by SW, the proportion of each treatment level is maintained as the
same as in the observed data. However, for NSW, the distribution of X in the area of A = a is
fx(x)/P(A = a), therefore the proportion of A = a in the pseudo dataset is,
Jia x@/PA=a)dx
2K o xWIPA = pdx K

For NSW, the proportions of all the treatment levels are the same at 1/K. To summarize the discussion,
the covariate distribution balance is achieved for either weight, while the stabilized weight generates
a pseudo dataset in which the size and the proportion of each level of treatment remain the same as
the original sample, the non-stabilized weight generates pseudo dataset in which the size of data for
each level of treatment is as large as the size of the whole original sample.

A large literature, like Cole and Hernan (2004), first describes the non-stabilized weight, and then
explains that the stabilized weight can be used to reduce the variance of the treatment effect estimated
by the non-stabilized weight. However, you can reduce the variance by multiplying by an arbitrary
number less than 1 or by truncating when you have a value greater than a specified value, for example,
10. Therefore, this explanation is not accurate as the rationale of the stabilized weight. We have shown
that the stabilized weight is more appropriate than the non-stabilized weight in that both the size and
the proportion of each treatment level remain the same while achieving the objective of covariate
distribution balance.

2.2. Marginal hazard ratio and conditional hazard ratio

For censored data we usually do not represent the treatment effect as an average because the complete
value may not be observed. The treatment effect on survival time can be expressed by using a hazard
function in the Cox proportional hazards model:

A7, (1) = Ao(t) exp(By), 2.2)

where Ap(?) is a baseline hazard function that does not need to be specified. 8,, a = 1,...,K are
parameters that represent the treatment effects, and since there are K categories, the number of pa-
rameters required is K — 1. The parameter corresponding to the last baseline category is assumed to be
0,1i.e., Bx = 0. Ar,_,(¢) is a hazard function of the counterfactual survival time 7'4-,, which is obtained
when the treatment a is randomly assigned to a unit. Therefore

A, (D
A7, (D

= exp(Bs = Bv) (2.3)

is the hazard ratio obtained when treatment a is assigned to one of the two randomly selected units,
with treatment b assigned to the other, and can be interpreted as a causal treatment effect. exp(8,) is
the effect of the treatment a over the baseline treatment K because 8, = 0 when b = K. If observed
data are given by simple observation, not by randomized experiment, then the model applied to this
data is not Az,_ (¢), but

Ar(1A = a) = (1) exp(B,). 2.4)

We cannot interpret 3, or exp(f;, — 5;) causally. However, if covariate vector X, which characterizes
the units, satisfies Assumption 2, the pseudo dataset obtained by applying the inverse probability



Estimating causal effect of multi-valued treatment from observational survival data 681

weights becomes the data for which the confounding effect has been eliminated. Thus, the parameters
obtained by applying the Cox proportional hazards model to the pseudo dataset can be interpreted
causally.

However, assuming a Cox model for pseudo dataset, covariates may be included as:

Az, (t1X = x) = Ap(t) exp(0, + yx). 2.5)

The covariate vector x included in the above model uses the same symbol as the covariate vector
x used to generate the pseudo dataset, but it may be a part of that covariate vector. In the above
model, it is assumed that there is no interaction effect between the covariate X and treatment A on
the counterfactual survival time T4-,. The inclusion of interaction term in the model complicates
interpretation because the treatment effect can be modified by the covariate value. The hazard ratio
under the model (2.5)

Ar,., (11X = X)

L (X =x exp(6a — 6p) (2.6)

is the conditional hazard ratio. If the Cox model is fitted to the observed data, not the pseudo dataset,
then the analysis model can be expressed as

Ar(A =a,X = x) = (D exp (8, + ¥ x). 2.7

Generally 6, # 6/, but if the covariate vector X satisfies Assumption 2 and the model (2.5) truly holds,
then 6, = 6. This is because all confounders have been included in the model and controlled.

As Austin (2013) noted, the conditional causal hazard ratio (2.6) should be distinguished from the
marginal causal hazard ratio (2.3). The conditional hazard ratio is obtained when different treatments
are assigned to the same unit or units with the same attributes, while the marginal hazard ratio is ob-
tained when different treatments are assigned to units with different attributes. The answer to which
of the two hazard ratios is more appropriate as a measure of treatment effect depends on the situation.
Randomized experiments assign treatments to units with different attributes; therefore, the marginal
hazard ratio can be seen as a more appropriate measure if a randomized experiment is a proper pro-
cedure to estimate the causal effect. This may be the case if you want to know the effect of a public
policy or the effect on all patients. However, a conditional hazard ratio may be a more appropriate
measure if one wants to know which of the selectable treatments is more effective for individual, or
if one wants to know the effect on units with a specific attribute. Therefore, the choice of the type of
measure depends on the situation, such as the purpose of the study or the subject of interest.

2.3. Data analysis procedure

When censored data (4;, X;, Y;,d;), i = 1,...,n are given, the procedure for estimating the treatment
effect by applying the IPW method is summarized. We observe Y; = min(7;, C;), C; represents the
censoring time, and d; = I(T; < C;) is the indicator of complete data. We assume the survival time T
and the censoring time C are independent, and the first two assumptions in Section 2 hold for 7', not
Y.

First, the multinomial logit model is fitted to estimate the general propensity score P(A = a|X = x):

P(A =a|lX =x)

T
= =1,2,...,K—-1. 2.
OgP(A=K|X=x) a,+0,x, a 22, (2.8)
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The above model imposes a constraint of ax = dx = 0 for the baseline category parameters. The
polynomial model may be expressed in another form as:

exp (au + 6Zx)
Sr exp (ah + 5Zx),

If the programming language R is used as an analytical tool, the multinom function in the nnet
package can be used to estimate e(a, x) = P(A = alX = x) (Venables and Ripley, 2002). For the
estimation of e(a, x) more flexible semi-parametric or non-parametric methods may be applied. The
estimate of P(A = a) is required to use stabilized weights. If a random sample has been taken, the
sample proportion, Y7, I(A; = a)/n, can be used as the estimate of P(A = a).

Fit the Cox model with only a treatment variable A

Az, (1) = (1) exp(Ba)

to the pseudo dataset generated using estimated stabilized weights. Then marginal hazard ratio
Ar,_, )/ A1, (1) = exp(B,), which represents the effect of the treatment a compared to the baseline
treatment K can be estimated. If the model with covariate vector X in addition to treatment variable A

Ar,_,(t1X = x) = A() exp (0, + yx)

PA=daX=x) = a=12,... K.

is fitted, a conditional hazard ratio Ar,_ (#1X = x)/Ar,_, (11X = x) = exp(f,) can be estimated. However,
if a Cox model is fitted to the observed data rather than the pseudo dataset, the estimates of the
treatment effects can be biased due to confounding. The weights are not integers, so that it is not clear
how to generate a pseudo dataset. But the non-integer weight causes no problems if you use analysis
methods that allow non-integer weighting, such as the survival: : coxph function (Therneau, 2015).
For a theoretical description of the analysis using non-integer weights, see Section 7.3 of Therneau
and Grambsch (2000).

When you obtain estimates of the Cox model regression coefficient, 8, or 6,, you obtain estimates
of the hazard ratio, e’ or e%. Now let us consider the variance of the estimators. The authors of this
paper recommend the use of stabilized weights for IPW method. If non-stabilized weights are used,
the sample size is a problem. If there are K treatment levels, the size of pseudo dataset proves to be
K times the size of the original data on average. Therefore, the standard error of the estimate will
be underestimated by 1/ VK times on average. The use of stabilized weights can eliminate sample
size problems. However, the problem that observations in pseudo dataset are not independent still
remains. Pseudo data constructed by applying the weights are not a random sample. In this case,
robust standard error is recommended. The robust standard error was proposed by Lin and Wei (1989)
as a less sensitive estimate when the model was incorrectly specified. Binder (1992) has extended this
estimate and proposed a new robust standard error that can be used even if the sampling probabilities
of elements are not equal or the samples are not independent. If you give the option robust=TRUE in
the survival: : : coxph function, you can obtain Binder’s robust standard error. However, Binder’s
robust standard error assumes that the weights are known. The weights should be estimated in the
actual analysis. However, as the following section shows, it seems that the impact of additional
uncertainty from the estimation of weights does not matter much.

3. Simulation study

Simulations are conducted to confirm the contents of Section 2. The following is what we like to
confirm through a simulation. First, when estimating causal effects from censored data obtained from
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observational studies, we check how wrong the results can be if we simply estimate them without
distinguishing between observational and causal studies. Next, we check how different the results
will be depending on if the non-stabilized or stabilized weights are used when applying the IPW
method. We also look at what is appropriate as the standard error of the estimate.

To ensure that the simulations are not too distant from the actual situation, the simulations have
been done based on the real data. A model was fitted to the real data and then the fitted model
was assumed to be the true model, and data for the simulation were generated from it. Matheson
et al. (2012) conducted a study on the association between healthy lifestyle habits and mortality.
Data in their study were used for simulation. National Health and Nutrition Examination Survey
(NHNES) III data were used in the study of Matheson et al. (2012). However, the same data
as in Matheson et al. (2012) could not be rebuilt because the NHNES III raw data were released
(https://wwwn.cdc.gov/nchs/nhanes/nhanes3/default.aspx) and the refining process was not disclosed.
In this simulation, it does not matter if data are exactly the same because the data compares the per-
formance of the estimation methods rather than the exact magnitude of the causal effect of the healthy
lifestyle habit on mortality. Also, the NHNES III data were not sampled with equal probability, but
were considered random sample to simplify the simulation. From the date of registration between
October 1988 and October 1994, 12,522 men and women over the age of 21 were followed up until
December 31, 2006. The average follow-up time was 162 months and the total death toll was 3600.
Healthy lifestyle habits (a treatment variable) is a categorical variable with five categories, which is a
combination of diet, exercise, drinking and smoking habits of the observed at the time of registration.
Values were given from 1 to 5, and level 5 is the category with the healthiest habit. The sample propor-
tions of the five categories were 0.073, 0.253, 0.3474, 0.2230, and 0.0661, respectively. The response
variable time is from the time of registration to the time of death or censoring; in addition, there
are age, gender, race, marital status, and educational level as covariates, all of which are categorical
variables.

Matheson et al. (2012) considered the association between healthy habits and mortality, but in this
simulation we consider the causal effects of healthy habits on mortality. In order to create a situation
in which covariate distribution varies by treatment level, treatment variable A, healthy lifestyle habits,
is created using the following multinomial logit model. The covariate vector x consists of a bunch of
dummy variables corresponding to five categorical covariates.

exp (aa + 6Zx)

PA=aX=1x)= R
Zle exp (ozh + 5,fx)

a=1,2,3,4,5. 3.1

The values of a, and ¢, the parameters of the above model, are obtained from the fitted model to the
actual data.

In order to generate a response variable corresponding to the generated treatment A = a and a
given vector of covariates x, the survival time 7 and the censoring time C are generated using the
model (2.5). The parameter values of the model were determined by the estimates obtained by fitting
the model (2.7) to the actual data. Since the last category is the base category of treatment variable
A, 05 =0, and 6, = 0.8273, 6, = 0.5155, 6; = 0.3657, 6, = 0.2267 as a result of fitting the model
(2.7). Refer to Bender ef al. (2005) and Kim and Kim (2018) for information on how to generate
survival times and censoring times when the Cox proportional hazards model is assumed. The former
proposed parametric methods, the latter proposed nonparametric methods, and this simulation has
applied a nonparametric method.

The causal effect of healthy lifestyle on mortality is defined as hazard ratio. The focus shall be
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on the marginal hazard ratio. This is because the conditional hazard ratio can be estimated without
methodology for causal studies, such as the IPW, if the covariate vector satisfies the strong ignorability
as described in the previous section. However, the marginal hazard ratio (2.3) cannot be estimated
simply by fitting a model (2.4) to the observed data.

The model (2.5) for generating data is a model with covariates, and (2.6) is a conditional hazard
ratio. We need to know the value of the marginal hazard ratio to compare the performance of various
estimators. A randomized experiment is simulated to find the true marginal hazard ratio corresponding
to the model (2.5). For this, the treatment A is not determined in accordance with the multinomial
model (3.1), but is randomly determined. The probability of A = a may be set 1/K for all a, but
the observed proportion of A = a in the actual data was used. The survival times are generated
in accordance with model (2.5). The model (2.2) with no covariates is fitted to the data generated,
and the marginal hazard ratio (2.3) is estimated. The average of the estimates obtained by repeated
implementation of this process would be close to the true marginal hazard ratio. The number of
repetitions is 5,000.

The overall procedure of the simulation is as follows.

0. The parameters of the true model for generating simulated data are determined by fitting the multi-
nomial model and the Cox model to the given actual data. In addition, the true marginal hazard
ratios are obtained by the process described above.

1. Generate treatment AY, i = 1,2,...,n, from the model (3.1). Estimate the inverse probability
weights, both sw(a;, x;) and w(a;, x;), from the model obtained by fitting the multinomial model
(2.8) to the generated data.

2. Generating T} and C; from the model (2.5), we get the response variable Y7 = min(T/, C}) and
d: = I(T < C?). Apply the IPW method to the generated data (A}, X;, Y7, d}), i = 1,...,n, and
then fit the Cox model (2.4). We also apply Cox model (2.4) without applying IPW method for
comparison with the IPW method.

3. Repeat the previous Step 1 and Step 2 1,000 times to compare the performance of three estimators
of treatment effects, one without using the IPW method, one with the stabilized weights, and one
with non-stabilized weights.

To compare the point estimation performance, three measures, bias, relative bias and mean squared
error, are computed. Relative bias is calculated as the absolute value of the bias divided by the true
marginal hazard ratio, then expressed as a percentage. Actual coverage probability and length of
confidence interval are also obtained to compare the interval estimation performance.

The true marginal hazard ratios obtained in Step 0, exp(8, — Bs) = exp(B,), a = 1,2,3,4, are
1.8273, 1.4741, 1.3222, and 1.1920, respectively (The standard errors, standard deviation divided by
V5000, of the marginal hazard ratios are 0.0019, 0.0015, 0.0010, and 0.0009, respectively, indicating
that the values obtained by simulations are close enough to the true values). Also note that the true
conditional hazard ratios, exp(8,), a = 1,2,3,4, are 2.2872, 1.6744, 1.4415, and 1.2544, which are
different from the marginal hazard ratios.

Without the application of the IPW method, the marginal hazard ratio cannot be properly esti-
mated. It can be expected that biased estimates will be obtained when model (2.4) is fitted to sim-
ulated data without applying the IPW method. The performance of the estimator by this method is
summarized in the first row of Table 1. It can be seen that bias occurs at all treatment levels, the
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Table 1: Point estimation performance: MSE, bias, relative bias in %

MSE Bias (Relative Bias in %)
trt 1 trt 2 trt 3 trt 4 trt 1 trt 2 trt 3 trt 4
No IPW 0.0875 0.0215 0.0207 0.0142 -0.2560 (14.0) -0.0927 (6.3) -0.1041(7.9) -0.0726 (6.1)
IPW: w(a,x) 0.0303 0.0164 0.0127 0.0122 0.0044 (0.2) 0.0049 (0.3) 0.0037 (0.3) 0.0050 (0.4)
IPW: sw(a,x) 0.0304 0.0165 0.0128 0.0112 0.0051 (0.3) 0.0050 (0.3) 0.0037 (0.3) 0.0050 (0.4)

| | | | |
21-44 yrs - .O ..... :, ....................................................................... |
45-64 yrs - . ........... In 44444444 O ........................................................... L
over 65 yrs - . ............ [ O .............................................................. L
Sex |- (@ :,@ ................................................................ L
White - ' .......... Il ............. O ...................................................... |
Black - . ............ b O .............................................. -
Other race —-|-- @ - :, 44444444 1 TEETE T ITITITPRPP PR RPRP PR -
Marital status —-- . ........... : ............. @ ...................................................... |
Less than high school | : ........... S ORE -
High school 4 @ - @:. ....................................................................... L
Some college —.. . 444444444 : .......................................................... @ .......... L
College or greater —-- TN :, .............................. @ v I

| I I I I

0.0 0.1 0.2 0.3 0.4 0.5

Standardized Difference

Figure 1: Balance of covariate distribution before and after IPW: Each point represents a standardized difference

between the maximum and minimum values of the proportions of each category of covariate at five treatment

levels. The balance of covariate distribution has been achieved if the point lies below 0.1. We do not distinguish
them because the two results of stabilized and non-stabilized weights coincide.

relative bias reaching up to 14%, and the mean square error of this estimate gets large due to the large
bias.

We now apply the IPW method, and report the performance of the two estimators obtained when
SW and NSW are used. The performance of the two estimators are very similar in bias and mean
square error. In the 1,000 simulations, we have found that 1,000 pairs of estimates at each of four
levels were very similar. The pseudo dataset generated depends on the weight used (For example, if
you use SW, the proportion of each treatment level is maintained as the same as in the observed data,
but if you use NSW, the proportions are changed to be all equal). However, the covariate distribution
balance in treatment levels is achieved no matter what weight is used (Figure 1). Consequently, there
is little difference in the two point estimates of treatment effect by SW and NSW.

We now investigate the interval estimates of the treatment effects when using the IPW method.
First, we compare the size of pseudo dataset. The average size of pseudo dataset is expected to be five
times the sample size of 12,522, when non-stabilized weights are used. As expected, the average is
62610 with standard deviation of 7.2. When stabilized weights are used, the average is 12522 with
standard deviation 0.5. Non-stabilized weights increase the size of pseudo dataset and therefore the
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Table 2: Interval estimation performance: actual coverage probability of the 95% confidence interval

trt 1 trt 2 trt 3 trt 4

IPW: likelihood 0.420 0.456 0.454 0.473
w(a, x) robust 0.978 0.974 0.972 0.973
IPW: likelihood 0.957 0.946 0.946 0.942
sw(a, x) robust 0.977 0.975 0.972 0.974

Table 3: Interval estimation performance: length of the 95% confidence interval (mean + standard error)

trt 1 trt 2 trt 3 trt 4
IPW: likelihood 0.1796 + 0.0006 0.1500 + 0.0005 0.1371 + 0.0005 0.1262 + 0.0004
w(a, x) robust 0.8149 + 0.0029 0.5671 + 0.0020 0.5021 + 0.0018 0.4728 + 0.0017
IPW: likelihood 0.6821 + 0.0025 0.4833 + 0.0018 0.4300 + 0.0016 0.4055 + 0.0015
sw(a, x) robust 0.8164 + 0.0029 0.5678 + 0.0020 0.5026 + 0.0018 0.4732 + 0.0017

standard error of the estimator is underestimated. An underestimated standard error would shorten
the confidence interval and would not guarantee a nominal confidence level of 95%. The first row of
Table 2 shows that the actual coverage probability dropped below 50%. From the second row, you
can see that the problem is solved using the robust standard error. A data size problem does not occur
if stabilized weights are used. The third row of Table 2 shows that, if you use stabilized weights,
there is no problem with the actual coverage probability even if you do not use the robust standard
error. However, the fourth rows of Table 2 and Table 3 show that the robust standard error slightly
overestimates the standard error of the estimate, thereby increasing the actual coverage probability
above the nominal confidence level and increasing the length. At least in this data there is no need
to use the robust standard error if you use stabilized weights. However, when you use non-stabilized
weights, you must use the robust standard error.

4. Conclusion

In survival analysis of observational data, the inverse probability weighting (IPW) method and the Cox
proportional hazards model are widely used when estimating the effects of multiple-valued treatment.
In this paper, the two kinds of weights have been examined in the IPW method, and the cautionary
points have been emphasized when defining the treatment effect as a hazard ratio.

When the IPW method is applied in the survival analysis, the explanation of the valid reasons
for the weights is confusing because different literature has a different perspective. In this paper
we explain the IPW method from the aspect of composing a pseudo dataset where the confounding
effect of covariates is eliminated. The two sets of pseudo data formed by the stabilized and the non-
stabilized weights differ in terms of the proportion of the treatment level and the size, there is no
difference in that the covariate distribution becomes balanced in treatment levels. It is recommended
to use stabilized weights when using IPW method in survival analysis since there seems to be no
reason to use non-stabilized weights.

It is important to distinguish between causal and associational hazard ratios when using the Cox
model for survival data; however, it is also important to distinguish between marginal and conditional
hazard ratios. Austin (2013) distinguished the two hazard ratios, but in some cases, it goes without
clearly distinguishing them, as in Sugihara (2010). We emphasized the difference between the two
hazard ratios again. The marginal hazard ratio cannot be estimated by fitting a Cox model with only
a treatment variable or by fitting a model with covariates to the observed data. Causal inference
methods, such as the IPW method, should be applied.

The above facts were confirmed through simulations based on real data. The standard error of
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the estimator must be estimated in order to perform hypothesis tests on the treatment effect or to
obtain confidence intervals. You have to use the robust standard error when non-stabilized weights
are applied. It was noted that the robust standard error may overestimate the true standard error
when the stabilized weights are applied, but this cannot be generalized due to the limitations of the
simulation.

All methods of causal reasoning from the observational study have limitations of relying on the
assumption of strong ignorability. Sensitivity analysis for the assumption is sometimes performed
because it is not possible to test from observed data whether the assumption holds or not, but sufficient
research has not been done yet on the sensitivity analysis in survival analysis.
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