• Title/Summary/Keyword: inverse projection

Search Result 71, Processing Time 0.026 seconds

3-D Inverse Radon Transform by Use of Tree-Structured Filter Bank

  • Morikawa, Yoshitaka;Murakami, Junichi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.184-187
    • /
    • 2002
  • Two-dimensional (2-D) X-ray computerized tomography (CT) equipments are widely used in industrial and medical fields, and nowadays studies on reconstruction algorithm for 3-D cone-beam acquisition systems are active for better utilization. The authors recent-By have proposed a fast reconstruction aigorithm using tree-structured filter bank for 2-D C1, and shown the algorithm is applicable to an approximate reconstruction of 3-D CT. For exact 3-D CT reconstruction, however, we have to backproject 1-D signal into 3-D space. This paper proposes a fast implementation method for this back-projection by use of tree-structured filter bank. and shows the proposed method works approximately 700 times faster than the direct one with almost same reconstruction image quality.

  • PDF

A Note on Unavoidable Sets for a Spherical Curve of Reductivity Four

  • Kashiwabara, Kenji;Shimizu, Ayaka
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.821-834
    • /
    • 2019
  • The reductivity of a spherical curve is the minimal number of times a particular local transformation called an inverse-half-twisted splice is required to obtain a reducible spherical curve from the initial spherical curve. It is unknown if there exists a spherical curve whose reductivity is four. In this paper, an unavoidable set of configurations for a spherical curve with reductivity four is given by focusing on 5-gons. It has also been unknown if there exists a reduced spherical curve which has no 2-gons and 3-gons of type A, B and C. This paper gives the answer to this question by constructing such a spherical curve.

AN ITERATION SCHEMES FOR NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITIES

  • Wang, Hong-Jun;Song, Yi-Sheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.991-1002
    • /
    • 2011
  • An iterative algorithm is provided to find a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of some variational inequality in a Hilbert space. Using this result, we consider a strong convergence result for finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping. Our results include the previous results as special cases and can be viewed as an improvement and refinement of the previously known results.

On-line Camera Calbration Using the Time-Varying Image Sequence (시변 순차영상을 이용한 On-line 카메라 교정)

  • 김범진;이호순;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.440-440
    • /
    • 2000
  • In general, camera calibration is consisted of Indoor and Outdoor system. In case of Indoor system, it was optimized experimental condition. However, Outdoor system is different camera parameters for each image that is compared to equaled position. That is, it imply that camera parameters are varied by an environment with light or impulse noise, etc. So we make use of Image sequence because that they provide the more information for each image. In addition to, we use Corresponding line because it has less error than Corresponding point. Corresponding line has also the more information. In this paper, we suggest on-line camera calibration method using the time-varying Image sequence and Corresponding line. So we calculate camera parameters with intrinsic and extrinsic parameters in On-line system.

  • PDF

Collision-Free Path Planning for Articulated Robots (다관절 로보트를 위한 충돌 회피 경로 계획)

  • Choi, Jin-Seob;Kim, Dong-Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.4
    • /
    • pp.579-588
    • /
    • 1996
  • The purpose of this paper is to develop a method of Collision-Free Path Planning (CFPP) for an articulated robot. First, the configuration of the robot is built by a set of robot joint angles derived from robot inverse kinematics. The joint space, that is made of the joint angle set, forms a Configuration space (Cspcce). Obstacles in the robot workcell are also transformed into the Cobstacles using slice projection method. Actually the Cobstacles means the configurations of the robot causing collision with obstacles. Secondly, a connected graph, a kind of roadmap, is constructed by the free configurations in the Cspace, where the free configurations are randomly sampled from a free Cspace immune from the collision. Thirdly, robot paths are optimally determinant in the connected graph. A path searching algorithm based on $A^*$ is employed in determining the paths. Finally, the whole procedures for the CFPP method are shown for a proper articulated robot as an illustrative example.

  • PDF

Collision-Free Path Planning of Articulated Robot using Configuration Space (형상 공간을 이용한 다관절 로보트의 충돌 회피 경로 계획)

  • Kim, J.H.;Choi, J.S.;Kang, H.Y.;Kim, Dong-Won;Yang, S.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.57-65
    • /
    • 1994
  • A collision-free path planning algorithm between an articulated robot and polyhedral obstacles using configuration space is presented. In configuration space, a robot is treated as a point and obstacles are treated as grown forbidden regions. Hence path planning problem is transformed into moving a point from start position to goal position without entering forbidden regions. For mapping to 3D joint space, slice projection method is used for first revolute joint and inverse kinematics is used for second and third revolute joint considering kinematic characteristics of industrial robot. Also, three projected 2D joint spaces are used in search of collision-free path. A proper example is provided to illustrate the proposed algorithm.

  • PDF

A 2-D Barcode Detection Algorithm based on Local Binary Patterns (지역적 이진패턴을 이용한 2차원 바코드 검출 알고리즘)

  • Choi, Young-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • To increase the data capacity of one-dimensional symbology, 2D barcodes have been proposed a decade ago. In this paper, a new 2D barcode detection algorithm based on Local Binary Pattern is presented. To locate 2D barcode symbols, a texture analysis scheme based on the Local Binary Pattern is adopted, and a gray-scale projection with sub-pixel operation is utilized to separate the symbol precisely from the input image. Finally, the segmented symbol is normalized using the inverse perspective transformation for the decoding process. The proposed method ensures high performances under various lighting/printing conditions and strong perspective deformations. Experiments show that our method is very robust and efficient in detecting the symbol area for the various types of 2D barcodes.

  • PDF

A Red Ginseng Internal Measurement System Using Back-Projection (Back-Projection을 활용한 홍삼 내부 측정 시스템)

  • Park, Jaeyoung;Lee, Sangjoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.10
    • /
    • pp.377-382
    • /
    • 2018
  • This study deals with internal state and tissue density analysis methods for red ginseng grade determination. For internal measurement of red ginseng, there have been various studies on nondestructive testing methods since the 1990s, It was difficult to grasp the most important inner hole and inside whites in the grading. So in this study, we developed a closed capturing device for infra-red illumination environment, and developed an internal measurement system that can detect the presence and diameter of inner hole and inside whites. Made devices consisted of infrared lights with a high transmission rate of red ginseng in 920 nanometer wave band, a infra-red camera and a Y axis actuator with a red ginseng automatically controlled focus on the camera. The proposed algorithm performs an auto-focus system on the Y-axis actuator to automatically adjust the sharp focus of the object according to the size and thickness. Then red ginseng is rotated $360^{\circ}$ at $1^{\circ}$ intervals and 360 total images are acquired, and reconstructed as a sinogram through Radon transform and Back-projection algorithm was performed to acquire internal images of red ginseng. As a result of the algorithm, it was possible to acquire internal cross-sectional image regardless of the thickness and shape of red ginseng. In the future, if more than 10,000 different shapes and sizes of red ginseng internal cross-sectional image are acquired and the classification criterion is applied, it can be used as a reliable automated ginseng grade automatic measurement method.

Human Motion Tracking by Combining View-based and Model-based Methods for Monocular Video Sequences (하나의 비디오 입력을 위한 모습 기반법과 모델 사용법을 혼용한 사람 동작 추적법)

  • Park, Ji-Hun;Park, Sang-Ho;Aggarwal, J.K.
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.657-664
    • /
    • 2003
  • Reliable tracking of moving humans is essential to motion estimation, video surveillance and human-computer interface. This paper presents a new approach to human motion tracking that combines appearance-based and model-based techniques. Monocular color video is processed at both pixel level and object level. At the pixel level, a Gaussian mixture model is used to train and classily individual pixel colors. At the object level, a 3D human body model projected on a 2D image plane is used to fit the image data. Our method does not use inverse kinematics due to the singularity problem. While many others use stochastic sampling for model-based motion tracking, our method is purely dependent on nonlinear programming. We convert the human motion tracking problem into a nonlinear programming problem. A cost function for parameter optimization is used to estimate the degree of the overlapping between the foreground input image silhouette and a projected 3D model body silhouette. The overlapping is computed using computational geometry by converting a set of pixels from the image domain to a polygon in the real projection plane domain. Our method is used to recognize various human motions. Motion tracking results from video sequences are very encouraging.

A 2-Dimensional Barcode Detection Algorithm based on Block Contrast and Projection (블록 명암대비와 프로젝션에 기반한 2차원 바코드 검출 알고리즘)

  • Choi, Young-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.259-268
    • /
    • 2008
  • In an effort to increase the data capacity of one-dimensional symbology, 2D barcodes have been proposed a decade ago. In this paper, we present an effective 2D barcode detection algorithm from gray-level images, especially for the handheld 2D barcode recognition system. To locate the symbol inside the image, a criteria based on the block contrast is adopted, and a gray-scale projection with sub-pixel operation is utilized to segment the symbol precisely from the region of interest(ROI). Finally, the segmented ROI is normalized using the inverse perspective transformation for the following decoding processes. We also introduce the post-processing steps for decoding the QR-code. The proposed method ensures high performances under various lighting/printing conditions and strong perspective deformations. Experiments shows that our method is very robust and efficient in detecting the code area for the various types of 2D barcodes in real time.