• Title/Summary/Keyword: inverse identification

Search Result 215, Processing Time 0.027 seconds

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.

Identification of Contaminant Injection in Water Distribution Network

  • Marlim, Malvin Samuel;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.114-114
    • /
    • 2020
  • Water contamination in a water distribution network (WDN) is harmful since it directly induces the consumer's health problem and suspends water service in a wide area. Actions need to be taken rapidly to countermeasure a contamination event. A contaminant source ident ification (CSI) is an important initial step to mitigate the harmful event. Here, a CSI approach focused on determining the contaminant intrusion possible location and time (PLoT) is introduced. One of the methods to discover the PLoT is an inverse calculation to connect all the paths leading to the report specification of a sensor. A filtering procedure is then applied to narrow down the PLoT using the results from individual sensors. First, we spatially reduce the suspect intrusion points by locating the highly suspicious nodes that have similar intrusion time. Then, we narrow the possible intrusion time by matching the suspicious intrusion time to the reported information. Finally, a likelihood-score is estimated for each suspect. Another important aspect that needs to be considered in CSI is that there are inherent uncertainties, such as the variations in user demand and inaccuracy of sensor data. The uncertainties can lead to overlooking the real intrusion point and time. To reflect the uncertainties in the CSI process, the Monte-Carlo Simulation (MCS) is conducted to explore the ranges of PLoT. By analyzing all the accumulated scores through the random sets, a spread of contaminant intrusion PLoT can then be identified in the network.

  • PDF

Stochastic identification of masonry parameters in 2D finite elements continuum models

  • Giada Bartolini;Anna De Falco;Filippo Landi
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.429-444
    • /
    • 2023
  • The comprehension and structural modeling of masonry constructions is fundamental to safeguard the integrity of built cultural assets and intervene through adequate actions, especially in earthquake-prone regions. Despite the availability of several modeling strategies and modern computing power, modeling masonry remains a great challenge because of still demanding computational efforts, constraints in performing destructive or semi-destructive in-situ tests, and material uncertainties. This paper investigates the shear behavior of masonry walls by applying a plane-stress FE continuum model with the Modified Masonry-like Material (MMLM). Epistemic uncertainty affecting input parameters of the MMLM is considered in a probabilistic framework. After appointing a suitable probability density function to input quantities according to prior engineering knowledge, uncertainties are propagated to outputs relying on gPCE-based surrogate models to considerably speed up the forward problem-solving. The sensitivity of the response to input parameters is evaluated through the computation of Sobol' indices pointing out the parameters more worthy to be further investigated, when dealing with the seismic assessment of masonry buildings. Finally, masonry mechanical properties are calibrated in a probabilistic setting with the Bayesian approach to the inverse problem based on the available measurements obtained from the experimental load-displacement curves provided by shear compression in-situ tests.

Imaging of Facial Nerve With 3D-DESS-WE-MRI Before Parotidectomy: Impact on Surgical Outcomes

  • Han-Sin Jeong;Yikyung Kim;Hyung-Jin Kim;Hak Jung, Kim;Eun-hye Kim;Sook-young Woo;Man Ki Chung;Young-Ik Son
    • Korean Journal of Radiology
    • /
    • v.24 no.9
    • /
    • pp.860-870
    • /
    • 2023
  • Objective: The intra-parotid facial nerve (FN) can be visualized using three-dimensional double-echo steady-state water-excitation sequence magnetic resonance imaging (3D-DESS-WE-MRI). However, the clinical impact of FN imaging using 3D-DESS-WE-MRI before parotidectomy has not yet been explored. We compared the clinical outcomes of parotidectomy in patients with and without preoperative 3D-DESS-WE-MRI. Materials and Methods: This prospective, non-randomized, single-institution study included 296 adult patients who underwent parotidectomy for parotid tumors, excluding superficial and mobile tumors. Preoperative evaluation with 3D-DESS-WE-MRI was performed in 122 patients, and not performed in 174 patients. FN visibility and tumor location relative to FN on 3D-DESS-WE-MRI were evaluated in 120 patients. Rates of FN palsy (FNP) and operation times were compared between patients with and without 3D-DESS-WE-MRI; propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) were used to adjust for surgical and tumor factors. Results: The main trunk, temporofacial branch, and cervicofacial branch of the intra-parotid FN were identified using 3D-DESS-WE-MRI in approximately 97.5% (117/120), 44.2% (53/120), and 25.0% (30/120) of cases, respectively. The tumor location relative to FN, as assessed on magnetic resonance imaging, concurred with surgical findings in 90.8% (109/120) of cases. Rates of temporary and permanent FNP did not vary between patients with and without 3D-DESS-WE-MRI according to PSM (odds ratio, 2.29 [95% confidence interval {CI} 0.64-8.25] and 2.02 [95% CI: 0.32-12.90], respectively) and IPTW (odds ratio, 1.76 [95% CI: 0.19-16.75] and 1.94 [95% CI: 0.20-18.49], respectively). Conversely, operation time for surgical identification of FN was significantly shorter with 3D-DESS-WE-MRI (median, 25 vs. 35 min for PSM and 25 vs. 30 min for IPTW, P < 0.001). Conclusion: Preoperative FN imaging with 3D-DESS-WE-MRI facilitated anatomical identification of FN and its relationship to the tumor during parotidectomy. This modality reduced operation time for FN identification, but did not significantly affect postoperative FNP rates.

A study for improvement of far-distance performance of a tunnel accident detection system by using an inverse perspective transformation (역 원근변환 기법을 이용한 터널 영상유고시스템의 원거리 감지 성능 향상에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.247-262
    • /
    • 2022
  • In domestic tunnels, it is mandatory to install CCTVs in tunnels longer than 200 m which are also recommended by installation of a CCTV-based automatic accident detection system. In general, the CCTVs in the tunnel are installed at a low height as well as near by the moving vehicles due to the spatial limitation of tunnel structure, so a severe perspective effect takes place in the distance of installed CCTV and moving vehicles. Because of this effect, conventional CCTV-based accident detection systems in tunnel are known in general to be very hard to achieve the performance in detection of unexpected accidents such as stop or reversely moving vehicles, person on the road and fires, especially far from 100 m. Therefore, in this study, the region of interest is set up and a new concept of inverse perspective transformation technique is introduced. Since moving vehicles in the transformed image is enlarged proportionally to the distance from CCTV, it is possible to achieve consistency in object detection and identification of actual speed of moving vehicles in distance. To show this aspect, two datasets in the same conditions are composed with the original and the transformed images of CCTV in tunnel, respectively. A comparison of variation of appearance speed and size of moving vehicles in distance are made. Then, the performances of the object detection in distance are compared with respect to the both trained deep-learning models. As a result, the model case with the transformed images are able to achieve consistent performance in object and accident detections in distance even by 200 m.

Forced Vibration Test of a Real-Scale Structure and Design of HMD Controllers for Simulating Earthquake Response (실물 크기 구조물의 강제진동실험 및 지진응답 모사를 위한 HMD제어기 설계)

  • Lee, Sang-Hyun;Park, Eun-Churn;Youn, Kyung-Jo;Lee, Sung-Kyung;Yu, Eun-Jong;Min, Kyung-Won;Chung, Lan;Min, Jeong-Ki;Kim, Young-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.103-114
    • /
    • 2006
  • Forced vibration testing is important for correlating the mathematical model of a structure with the real one and for evaluating the performance of the real structure. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element (FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. Pseudo-earthquake excitation tests showed that HMD induced floor responses coincided with the earthquake induced ones which were numerically calculated based on the updated FE model.

Application of sound scattering models to swimbladdered fish, red seabream (Chrysophys major)

  • Kang Donhyug;Hwang Doojin;Na Jungyul;Kim Suam
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.233-236
    • /
    • 2000
  • The acoustical response of fish depends on size and physical structure na, most important, on the presence or absence of a swimbladder. Acoustic scattering models for swimbladdered fish represent a fish by an ideal pressure-release surface having the size and shape as the swimbladder. Target strength experiments of red seabream (Chrysophrys major) have been conducted using 38 (split-beam), 120 (split-beam) and 200kHz (dual-beam) frequencies. At each start of each experiment, the live fish are placed in the cage at the surface, then the cage is lowed to about $4{\cal}m$ depth where it remains during the measurements. To test the acoustic models, predictions of target strength based on swimbladder morphometries of 10 red seabream offish total length from $103{\cal}mm{\;}to{\;}349{\cal}mm$ ($3 <$TL/\lambda$ < 45)are compared with conventional target strength measurements on the same, shock-frozen immediately after caged experiments. X-ray was projected along dorsal aspect to know the morphological construction of swimbladder. and fish body. At high frequencies, Helmholtz-kirchhoff(HK) approximation would greatly enhance swimbladdered fish modeling. Sound scattering model [HK-ray approximation model] for comparison to experimental target strength data was used to model backscatter measurements from individual fish. The scattering data can be used in the inverse method along with multiple frequency sonar systems to investigate the adequacy of classification and identification of fish

  • PDF

Identification of Thermal Flow Boundary Conditions for Three-way Catalytic Converter Using Optimization Techniques (최적화 기법을 이용한 삼원촉매변환기의 열유동 경계조건의 동정)

  • Baek, Seok-Heum;Choi, Hyun-Jin;Kim, Kwang-Hong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3125-3134
    • /
    • 2010
  • Three-way catalyst durability in the Korea requires 5 years/80,000km in 1988 but require 10 years/120,000km after 2002. Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but don't satisfy thermal durability. Three-way catalyst maintains high temperature in interior domain but maintain low temperature on outside surface. This study evaluated thermal durability of three-way catalyst by thermal flow and structure analysis and the procedure is as followings. Thermal flow parameters ranges were determined by vehicle test and basic thermal flow analysis. Response surface for rear catalyst temperature was constructed using the design of experiment (DOE) for thermal flow parameters. Thermal flow parameters for rear catalyst temperature in vehicles examination were predicted by desirability function. Temperature distribution of three-way catalyst was estimated by thermal flow analysis for predicted thermal flow parameters.

Identification of Muscle Forces and Activation of Quadriceps Femoris Muscles of Healthy Adults Considering Knee Damping Effects during Patellar Tendon Reflex (건강한 성인의 슬개건 반사 시 무릎 감쇠효과를 고려한 대퇴사두근의 근력 및 근활성도 예측)

  • Kang, Moon Jeong;Jo, Young Nam;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • Most analytical models of the human body have focused on conscious responses. A patellar tendon reflex, a representative example of spinal reflexes, occurs without a neural command. Muscle forces and activation of the quadriceps femoris muscles in healthy adults during patellar tendon reflex are identified in this study. The model is assumed to move in the sagittal plane, and the thigh and the trunk are assumed to be fixed in a sitting position so that the shank can move similar to a pendulum. The knee joint is modeled as a revolute joint, and the ankle joint is modeled as a fixed joint so that the shank and the foot can be regarded as one rigid body. Muscle forces are calculated following the inverse dynamic approach. Kinematic data obtained from an experiment (Mamizuka, 2007) are used as input data. Muscle activations are identified using a Hill-type muscle model. The obtained simulation results are compared with experimental results for validating the model and the underlying assumptions.

Identification and Molecular Characterization of Novel cry1-Type Toxin Genes from Bacillus thuringiensis K1 Isolated in Korea

  • Li Ming Shun;Choi Jae-Young;Roh Jong-Yul;Shim Hee-Jin;Kang Joong-Nam;Kim Yang-Su;Wang Yong;Yu Zi Niu;Jin Byung-Rae;Je Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • To clone novel cry1-type genes from the Bacillus thuringiensis K1 isolate, about 2.4-kb-long PCR fragments were amplified with two primer sets of ATG1-F/N400-R and 1BeATG1-F/N400-R. Using PCR-RFLP, three novel cry1-type genes, cry1-1, cry1-7, and cry1-44, were obtained from B. thuringiensis K1 and the complete coding sequences of these novel genes were analyzed. The Cry1-1, Cry1-7, and Cry1-44 proteins showed maximum similarities of about 78.0%, 99.7%, and 91.0% with the Cry1Ha1, Cry1Be1, and Cry1Ac2 proteins, respectively. These novel cry1-type genes were expressed using a baculovirus expression vector system and their insecticidal activities were investigated. Whereas all three novel genes were toxic to Plutella xylostella larvae, only Cry1-1 showed insecticidal activity against Spodoptera exigua larvae.