• Title/Summary/Keyword: inverse dispersion parameter

Search Result 3, Processing Time 0.016 seconds

The Intermolecular Potential of Ar-Ar by Regularized Inverse Method (규칙화 역과정 방법을 이용한 Ar-Ar의 분자간 위치에너지 결정)

  • Kim, Hwa Joong;Kim, Young Sik
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.20-27
    • /
    • 1996
  • A stable and accurate inverse method for extracting potential from spectroscopic data studied. The method is based on the Tikhonov regularization method to overcome the possible instability of nonlinear inverse problems using a priori smooth properties of the potential energy surface. The merit of this method is to treat the potential as continuous functions of the intermolecular coordinates instead of the conventional parameter fitting of restricted potential forms. Numerical study for the Ar-Ar show that from spectroscopic data the exact potential has been recovered whole region and the discrepancies by the dispersion force observed at the large distance between the exact and Morse potential or from RKR method can be eliminated by this method.

  • PDF

Accuracy Measures of Empirical Bayes Estimator for Mean Rates

  • Jeong, Kwang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.845-852
    • /
    • 2010
  • The outcomes of counts commonly occur in the area of disease mapping for mortality rates or disease rates. A Poisson distribution is usually assumed as a model of disease rates in conjunction with a gamma prior. The small area typically refers to a small geographical area or demographic group for which very little information is available from the sample surveys. Under this situation the model-based estimation is very popular, in which the auxiliary variables from various administrative sources are used. The empirical Bayes estimator under Poissongamma model has been considered with its accuracy measures. An accuracy measure using a bootstrap samples adjust the underestimation incurred by the posterior variance as an estimator of true mean squared error. We explain the suggested method through a practical dataset of hitters in baseball games. We also perform a Monte Carlo study to compare the accuracy measures of mean squared error.

The Characteristics of Hydrogeological Parameters of Unconsolidated Sediments in the Nakdong River Delta of Busan City, Korea

  • Khakimov, Elyorbek;Chung, Sang Yong;Senapathi, Venkatramanan;Elzain, Hussam Eldin;Son, JooHyeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.27-41
    • /
    • 2017
  • This study dealt with the characteristics and the interrelations of hydrogeological parameters such as hydraulic conductivity, dispersivity and effective porosity of unconsolidated sediments for providing the basic data necessary for the planning of the management and preservation of groundwater quality in the Nakdong River Delta of Busan City, Korea. Groundwater quality in this area has been deteriorated due to seawater intrusion, agricultural fertilizer and pesticide, industrial wastewater, and contaminated river water. The physical properties (grain size distribution, sediment type, sorting) and aquifer parameters (hydraulic conductivity, effective porosity, longitudinal dispersivity) were determined from grain size analysis, laboratory permeability test and column tracer test. Among 36 samples, there were 18 Sand (S), 7 Gravelly Sand (gS), 5 Silty Sand (zS), 5 Muddy Sand (mS), and 1 Sandy Silt (sZ). Hydraulic conductivity was determined through a falling head test, and ranged from $9.2{\times}10^{-5}$ to $2.9{\times}10^{-2}cm/sec$ (0.08 to 25.6 m/day). From breakthrough curves, dispersivity was calculated to be 0.35~3.92 cm. Also, effective porosity and average linear velocity were obtained through the column tracer test, and their values were 0.04~0.46 and 1.06E-04~6.49E-02 cm/sec, respectively. Statistical methods were used to understand the interrelations among aquifer parameters of hydraulic conductivity, effective porosity and dispersivity. The relation between dispersivity and hydraulic conductivity or effective porosity considered the sample length, because dispersivity was affected by experimental scale. The relations between dispersivity and hydraulic conductivity or effective porosity were all in inverse proportion for all long and short samples. The reason was because dispersivity was in inverse proportion to the groundwater velocity in case of steady hydrodynamic dispersion coefficient, and groundwater velocity was in proportion to the hydraulic conductivity or effective porosity. This study also elucidated that longitudinal dispersivity was dependent on the scale of column tracer test, and all hydrogeological parameters were low to high values due to the sand quantity of sediments. It is expected that the hydrogeological parameter data of sediments will be very useful for the planning of groundwater management and preservation in the Nakdong River Delta of Busan City, Korea.