• Title/Summary/Keyword: inverse design

Search Result 765, Processing Time 0.026 seconds

Design of Inverse Optimal TS Fuzzy Controllers (역최적 TS 퍼지 제어기의 설계)

  • 임채환;곽기호;박주영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.137-140
    • /
    • 2001
  • In this paper, we design 75(Takagi-Sugeno) fuzzy controllers for the systems that can be represented by the 75 fuzzy model. We use inverse optimal approach in which the cost function is determined later than the Lyapunov function and its corresponding control input satisfying the design requirements such as stability and decay rate. The obtained design procedure is in the form of solving LMI(Linear Matrix Inequalities), thus very efficient in practice.

  • PDF

Subsonic/Transonic Airfoil Design Using an Inverse Method (Inverse 기법을 이용한 아음속/천음속 익형 설계)

  • Lee Jae Woo;Lee Young-Ki;Byun Yung-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.61-66
    • /
    • 1998
  • An inverse method for the subsonic and transonic airfoil design was developed using the Euler equations. Two testcases were performed. One was a design of the supercritical airfoil, aiming to be used for the Korean mid-sized (100 passengers class) transport aircraft. The other was the design of an airfoil showing a good cruising performance (L/D ratio) in the high subsonic/transonic flow regimes. These testcases demonstrated the efficiency and the robustness of the developed method.

  • PDF

Optimization Inverse Design Technique for Fluid Machinery Impellers (유체기계 임펠러의 최적 역설계 기법)

  • Kim J. S.;Park W. G.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 1998
  • A new and efficient inverse design method based on the numerical optimization technique has been developed. The 2-D incompressible Navier-Stokes equations are solved for obtaining the objective functions and coupled with the optimization procedure to perform the inverse design. The steepest descent and the conjugate gradient method have been applied to find the searching direction. The golden section method was applied to compute the design variable intervals. It has been found that the airfoil and the pump impellers are well converged to their targeting shapes.

  • PDF

Optimal shape design of a polymer extrusion die by inverse formulation

  • Na, Su-Yeon;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • The optimum design problem of a coat-hanger die is solved by the inverse formulation. The flow in the die is analyzed using three-dimensional model. The new model for the manifold geometry is developed for the inverse formulation. The inverse problem for the optimum die geometry is formed as the optimization problem whose objective function is the linear combination of the square sum of pressure gradient deviation at die exit and the penalty function relating to the measure of non-smoothness of solution. From the several iterative solutions of the optimization problem, the optimum solution can be obtained automatically while producing the uniform flow rate distribution at die exit.

  • PDF

New Continuous Variable Space Optimization Methodology for the Inverse Kinematics of Binary Manipulators Consisting of Numerous Modules (수많은 모듈로 구성된 이진 매니플레이터 역기구 설계를 위한 연속변수공간 최적화 신기법 연구)

  • Jang Gang-Won;Nam Sang Jun;Kim Yoon Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1574-1582
    • /
    • 2004
  • Binary manipulators have recently received much attention due to hyper-redundancy, light weight, good controllability and high reliability. The precise positioning of the manipulator end-effecter requires the use of many modules, which results in a high-dimensional workspace. When the workspace dimension is large, existing inverse kinematics methods such as the Ebert-Uphoff algorithm may require impractically large memory size in determining the binary positions of all actuators. To overcome this limitation, we propose a new inverse kinematics algorithm: the inverse kinematics problem is formulated as an optimization problem using real-valued design variables, The key procedure in this approach is to transform the integer-variable optimization problem to a real-variable optimization problem and to push the real-valued design variables as closely as possible to the permissible binary values. Since the actual optimization is performed in real-valued design variables, the design sensitivity becomes readily available, and the optimization method becomes extremely efficient. Because the proposed formulation is quite general, other design considerations such as operation power minimization can be easily considered.

Inverse Optimal Design of Formation/Velocity Consensus Protocol for Mobile Robots Based on LQ Inverse Optimal Second-order Consensus (LQ-역최적 2차 일치제어에 기반한 이동로봇에 대한 대형·속도일치 프로토콜의 역최적 설계)

  • Lee, Jae Young;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.434-441
    • /
    • 2015
  • In this paper, we propose an inverse optimal distributed protocol for the formation and velocity consensus of nonholonomic mobile robots. The communication among mobile robots is described by a simple undirected graph, and the mobile robots' kinematics are considered. The group of mobile robots driven by the proposed protocols asymptotically achieves the desired formation and group velocity in an inverse optimal fashion. The design of the protocols is based on dynamic feedback linearization and the proposed linear quadratic (LQ) inverse optimal second-order consensus protocol. A numerical simulation is given to verify the effectiveness of the proposed scheme.

Inverse Kinematics for Five-axis Machines Using Orthogonal Kinematics Chain (5축 밀링가공기의 직교 특성을 이용한 역기구학 방정식의 유도)

  • So, Bum-Sik;Jung, Yoong-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.153-161
    • /
    • 2008
  • This paper proposes an efficient algorithm for deriving inverse kinematics equation of 5-axis machine. Because the joint order and direction of 5-axis machine are different for each type of machine, each type of machine needs its own inverse kinematics equation for post-processing of NC data. Also derived inverse kinematics equation may cause problems of indeterminate and inconsistent solution. In order to resolve these problems, we have developed a generic method to derive direct kinematics equation by considering orthogonal joints of 5-axis machines. Using this method, we also have proposed a general algorithm for deriving inverse kinematics equation for various types of 5-axis machines.

The Inverse Design Technique of Axial Blade Using the Parallel Calculation (병렬 연산을 이용한 축류 블레이드의 역설계)

  • Cho, J. K.;Ahn, J. S.;Park, W. G.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.200-207
    • /
    • 1999
  • An efficient inverse design technique based on the MGM (Modified Garabedian-McFadden) method has been developed. The 2-D Navier-Stokes equations are solved for obtaining the surface pressure distributions and coupled with the MGM method to perform the inverse design. The solver is parallelized by using the domain decomposition method and the standard MPI library for communications between the processors. The MGM method is a residual-correction technique, in which the residuals are the difference between the desired and the computed pressure distribution. The developed code was applied to several airfoil shapes and the axial blade. It has been found that they are well converged to their target pressure distribution.

  • PDF

Inverse Airfoil Design for Wind Turbine (역설계 기법을 이용한 풍력터빈 에어포일 형상 설계)

  • Ryu, Ki-Wahn;Park, Myoung-Ho
    • Journal of Wind Energy
    • /
    • v.4 no.2
    • /
    • pp.55-60
    • /
    • 2013
  • The mathematical implementation for inverse airfoil design of wind turbines is presented using vortex panel method based on assumptions of the two-dimensional incompressible potential flow. The vortex panel method employs linear distribution of the vortex strength to obtain the well converged solution. Stream function is adopted to get the basic formula for the inverse airfoil design, and a symmetric seed airfoil is given for initial data of the iteration approach. The final airfoil shape has been compared with the original airfoil shape for validation of the mathematical procedure.

Optical Design of a Wide-field Off-axis Two-mirror System without Ray Obstruction (광선의 차폐가 없는 광시야 비축 2반사광학계 설계)

  • Oh, Hye-Jin;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.263-272
    • /
    • 2017
  • To design a wide-field optical system, the inverted telephoto configuration, which has a negative front group and a positive rear group, is popular. For a two-mirror system, the inverse Cassegrain system has the inverted telephoto configuration, but the inverse Cassegrain system with the conventional, axially symmetric configuration shows severe field screening and ray obstruction. To avoid these problems, we put the aperture stop on the secondary mirror of an inverse Cassegrain system to increase field of view, and designed a wide-field off-axis two-mirror system which only uses the off-axis field, without ray obstruction.