• Title/Summary/Keyword: inventory management system

Search Result 601, Processing Time 0.028 seconds

Development of decision supporting package for the design of a physical distribution system (물류시스템 설계를 위한 의사결정지원 패키지의 개발)

  • 송성헌;양병학
    • Korean Management Science Review
    • /
    • v.10 no.2
    • /
    • pp.79-91
    • /
    • 1993
  • Strategic decisions related to the design of a physical distribution system can be classified into three basic components : facility location, transportation, inventory decisions. In this research the interdependence of those decisions are expressed in a mathematical model such that the total relevant cost of the system is minimized. We suggested a heuristic technique for solving the model. In broad terms, our solution technique combines a heuristic method for determining which candidate DCs to open and an exact method for minimizing costs given a set of open DCs. And we also developed a decision supporting package for the design of a physical distribution system.

  • PDF

Design and Implementation of OpenCV-based Inventory Management System to build Small and Medium Enterprise Smart Factory (중소기업 스마트공장 구축을 위한 OpenCV 기반 재고관리 시스템의 설계 및 구현)

  • Jang, Su-Hwan;Jeong, Jopil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.161-170
    • /
    • 2019
  • Multi-product mass production small and medium enterprise factories have a wide variety of products and a large number of products, wasting manpower and expenses for inventory management. In addition, there is no way to check the status of inventory in real time, and it is suffering economic damage due to excess inventory and shortage of stock. There are many ways to build a real-time data collection environment, but most of them are difficult to afford for small and medium-sized companies. Therefore, smart factories of small and medium enterprises are faced with difficult reality and it is hard to find appropriate countermeasures. In this paper, we implemented the contents of extension of existing inventory management method through character extraction on label with barcode and QR code, which are widely adopted as current product management technology, and evaluated the effect. Technically, through preprocessing using OpenCV for automatic recognition and classification of stock labels and barcodes, which is a method for managing input and output of existing products through computer image processing, and OCR (Optical Character Recognition) function of Google vision API. And it is designed to recognize the barcode through Zbar. We propose a method to manage inventory by real-time image recognition through Raspberry Pi without using expensive equipment.

Demand Variability Impact on the Replenishment Policy in a Two-Echelon Supply Chain Model (두 계층 공급사슬 모형에서 발주정책에 대한 수요 변동성 영향)

  • Kim Eungab
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.3
    • /
    • pp.111-127
    • /
    • 2004
  • We consider a supply chain model with a make-to-order production facility and a single supplier. The model we treat here is a special case of a two-echelon inventory model. Unlike classical two-echelon systems, the demand process at the supplier is affected by production process at the production facility as well as customer order arrival process. In this paper, we address that how the demand variability impacts on the optimal replenishment policy. To this end, we incorporate Erlang and phase-type demand distributions into the model. Formulating the model as a Markov decision problem, we investigate the structure of the optimal replenishment policy. We also implement a sensitivity analysis on the optimal policy and establish its monotonicity with respect to system cost parameters.

Classification of Water Facility Inventories for the Construction of Water Supply Asset Management System (상수도 자산관리 시스템 구축을 위한 정수시설 인벤토리 분류)

  • Kim, Jinkeun;Lee, Junghoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.6
    • /
    • pp.651-657
    • /
    • 2015
  • Recently, the need for asset management(AM) plan introduction to reduce increasing O&M cost with aging water facilities is on the rise. Therefore, asset inventory classification is necessary as the first step for AM plan construction. In this study, all assets of YW water treatment plant(WTP) were classified as 5 steps. In addition, specific code name was given to each asset which can increase compatibility in constructing the AM programs among WTPs. In the future, codes for attribute and status of asset will be allocated, which can facilitate proper AM operation.

The Coordinated Local (R, S) Policy for Managing Inventory in Multi-stage Distribution Systems (다단계 분배시스템에서의 통합된 정기발주정책 수립방안)

  • 박창규
    • Korean Management Science Review
    • /
    • v.19 no.1
    • /
    • pp.107-116
    • /
    • 2002
  • A major challenge to supply chain managers is how to control inventories and costs along the supply chain while maximizing customer service Performance. In the literature, although the optimal management of inventory along the supply chain has received considerable attention during the past decades, the attention has been mainly given to multi-echelon control policies. A prerequisite for applying these policies is full information transparency in the supply chain, which is hard to accomplish in practice because it may require major organizational chanties. In the case that a decentralized control (local (R, S) policy) should be used at each location in multi-stave distribution systems, this paper presents the coordinating approach of determining the best policy which satisfies predetermined target customer service levels and minimizes the mean physical stock along the system.

A Development Plan for Integrated Inventory Management System to Support Decision Making for Disaster Response (재난대응 의사결정 지원을 위한 인벤토리 통합 관리 시스템 구축 방안)

  • Choi, Soo-Young;Gang, Su-Myung;Kim, Jin-Man;Oh, Eun-Ho;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.179-188
    • /
    • 2014
  • Social overhead capital (SOC) facilities are being threatened continuously by abnormal climate events that are increasing globally. For disaster response, rapid decision making on evacuation routes and other matters is critical. For this purpose, spatiotemporal information that combine data on disasters and SOC facilities needs to be utilized. This information is separately collected by government agencies and public organizations, and is not managed in an integrated manner. For rapid disaster response, an integrated management of separately collected disaster data and the creation of such information as the safety and damages on SOC facilities are required. To achieve this goal, it is essential to build inventories that integrate all the related information to support decision making indispensable for disaster response. In this study, a development plan for an integrated inventory management system based on the management and connection of inventories to support rapid decision making for disaster response is proposed. This system can collect and standardize data related to disasters and SOC facilities that are being managed separately and provide integrated information in line with the needs of users. The proposed system can be used as a decision making tool for proactive disaster response.

An Application to Multi-echelon Inventory Model : Using the Features of CSP (CSP품목 특성을 고려한 다단계 재고모형의 적용)

  • Ryoo, Yeon-Uk;Park, Myung-Sub
    • Journal of the military operations research society of Korea
    • /
    • v.32 no.1
    • /
    • pp.113-132
    • /
    • 2006
  • This study suggested a readily applicable model to estimate the proper purchasing amount and the optimal CSP(Concurrent Spare Parts) inventory level based on a supporting echelon. For this model to be implemented, it is determined for studies about Multi-echelon Inventory Model to be divided by issues and utilized in the system Moreover, the model also includes the factors that are to be excluded for a reasearch purpose and to be simply assumed. Compared to previous studies, this model is to be considered the most possible factors, realistically designed, and practically used. It is claimed that the results of this model would raise an issue of improving traditional approaches in CSP acquisition and inventory management.

CHAOS IN PRODUCTION PLANNING

  • Haghighirad, Farzad;Makui, Ahmad;Ashtiani, Behzad
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.739-750
    • /
    • 2008
  • A phenomenon which is seen in some of the manufacturing systems and production planning is chaos and the butterfly effect. The butterfly effect points out that in case of the presence of nonlinear relations in system and incorrect estimation of initial values of variables, the error in the estimates of system state will be intensified, and after a while there will be a large distance between available state of system and reality. Using mathematical means and computer simulation, we have tried to demonstrate that in a production system the numerical combination of Cycle Time (CT), Adjustment Time between existing and desired Work In Progress (WIP), and Adjustment Time between current and desired inventory can lead to chaos and butterfly effect in the behavior of the inventory state variable. Our paper concludes with a discussion of a hypothesis that emerged from this research.

  • PDF

A Case Study on Productivity Improvement by a Discrete Event-Driven Simulation System (이산사건 시뮬레이션 시스템을 활용한 생산성 개선 사례 연구)

  • Kim, Sangtae;Shin, Moonsoo;Ryu, Kwangyeol;Cho, Yongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.149-158
    • /
    • 2015
  • Up-to-date manufacturing companies have faced a market-driven environment of pull production order. There should be a difference in operating manufacturing resources according to the type, quantity, and delivery time of manufactured products, because the process situation in pull production is changed by customer orders. And it should be taken into account from the stage of preparing for production such as process design and the placement and utilization of manufacturing resources. However, the feasibility of production plans is limited because most of small manufacturing businesses make production/supply plan of the parts and products assuming that equipment abilities in scheduling is sufficient without managing process standard information systemically. In this study, a discrete event simulation system based on BOM (bill of material), that is F-OPIS (online productivity innovation system), is introduced and a case study on application of the system leading to improving productivities is presented. F-OPIS deals with a decision-problem on production management and it is specialized for small-and- medium sized manufacturing companies. The target company of this case study is a typical small-and-medium sized manufacturing company in Korea, that produces various machined parts. The target company adopts make-to-stock production management to prevent tardy delivery because of fluctuations in demand. Therefore, it is required to apply an efficient inventory control solution for improving productivities. In this paper, based on the constraints of working capacity of manufacturing resources, the bottleneck process is analyzed as production conditions are changed. Consequently, an improvement plan is proposed, that eventually enhances overall utilization rates of resources in the bottleneck process and reduces overall production lead-time and inventory level.

A Development of an Integrated Inventory Managing System for Steel-Plates (강재 통합 관리 시스템 개발)

  • Lee, Seok Hyun;Yu, Ji Hun;Kim, Hyun Chul;Jang, Seok Min;Lim, Rae Soo;Kim, Ho Kyeong;Heo, Joo Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • As one of the largest shipbuilding company in the world, STX Offshore & Shipbuilding currently developed an inventory managing system for steel-plates, which is applied to their steel stock yard. In a traditional way to manage steel yard, almost every work has been done by manually. The manual steel-plate piling process caused some problems such as process delay due to piling errors and the uncertainty of work plan due to lack of information. To solve these problems, we developed an integrated inventory managing system based on real-time crane tracking system which automatically updates steel-plates' piling status. We built the integrated steel-plate database, developed several programs including steel-plate input program, real-time steel-plate monitoring program and steel-yard management program, and constructed hardware system for tracking magnetic cranes. As a result, a supervisor of steel-yard can manage the inventory of steel-plates efficiently and furthermore plan an efficient piling schedule and crane working schedule.