• 제목/요약/키워드: invariant moment features

검색결과 23건 처리시간 0.025초

Fingerprint Verification Based on Invariant Moment Features and Nonlinear BPNN

  • Yang, Ju-Cheng;Park, Dong-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.800-808
    • /
    • 2008
  • A fingerprint verification system based on a set of invariant moment features and a nonlinear Back Propagation Neural Network(BPNN) verifier is proposed. An image-based method with invariant moment features for fingerprint verification is used to overcome the demerits of traditional minutiae-based methods and other image-based methods. The proposed system contains two stages: an off-line stage for template processing and an on-line stage for testing with input fingerprints. The system preprocesses fingerprints and reliably detects a unique reference point to determine a Region-of-Interest(ROI). A total of four sets of seven invariant moment features are extracted from four partitioned sub-images of an ROI. Matching between the feature vectors of a test fingerprint and those of a template fingerprint in the database is evaluated by a nonlinear BPNN and its performance is compared with other methods in terms of absolute distance as a similarity measure. The experimental results show that the proposed method with BPNN matching has a higher matching accuracy, while the method with absolute distance has a faster matching speed. Comparison results with other famous methods also show that the proposed method outperforms them in verification accuracy.

Open-Ball Scheme을 이용한 2D 패턴의 상대적 닮음 정도 측정의 Moment Invariant Method와의 비교 (Similarity Measurement Using Open-Ball Scheme for 2D Patterns in Comparison with Moment Invariant Method)

  • 김성수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권1호
    • /
    • pp.76-81
    • /
    • 1999
  • The degree of relative similarity between 2D patterns is obtained using Open-Ball Scheme. Open-Ball Scheme employs a method of transforming the geometrical information on 3D objects or 2D patterns into the features to measure the relative similarity for object(patten) recognition, with invariance on scale, rotation, and translation. The feature of an object is used to obtain the relative similarity and mapped into [0, 1] the interval of real line. For decades, Moment-Invariant Method has been used as one of the excellent methods for pattern classification and object recognition. Open-Ball Scheme uses the geometrical structure of patterns while Moment Invariant Method uses the statistical characteristics. Open-Ball Scheme is compared to Moment Invariant Method with respect to the way that it interprets two-dimensional patten classification, especially the paradigms are compared by the degree of closeness to human's intuitive understanding. Finally the effectiveness of the proposed Open-Ball Scheme is illustrated through simulations.

  • PDF

항공기 불변 인식에 관한 연구 (A Study on the Invariant Recognition of Aircraft)

  • 김창욱
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.88-100
    • /
    • 2000
  • The design of an automatic aircraft recognition system involves two parts. The first part is extraction of invariant features independent of scale, rotation and translation. The second part is determination of optimal decision procedures, which are needed in the classification process. In this research, we extracted invariant aircraft features regardless of size, rotation and translation using Fourier Descriptors and Zernike Moments and classified using neural networks.

  • PDF

SSD 알고리즘 기반 MI-FL을 적용한 회전 불변의 다중 객체 검출 시스템 구현 (Implementation of Rotating Invariant Multi Object Detection System Applying MI-FL Based on SSD Algorithm)

  • 박수빈;임혜연;강대성
    • 한국정보기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.13-20
    • /
    • 2019
  • 최근 CNN을 기반으로 한 객체 검출 기술의 연구가 활발하다. 객체 검출 기술은 자율주행차, 지능형 영상분석 등에서 중요한 기술로 사용된다. 본 논문에서는 CNN 기반의 객체 검출기 중 하나인 SSD(Single Shot Multibox Detector)에 MI-FL(Moment Invariant-Feature Layer)을 적용하여 회전 변형에 강인한 객체 검출 시스템을 제안한다. 먼저 VGG 네트워크를 기반으로 입력 이미지의 특징을 추출한다. 그 후 총 6개의 특징 계층(Feature layer)을 적용하여 객체의 위치 정보와 종류를 예측해 경계 박스들을 생성한다. 그 후 NMS 알고리즘을 이용해 가장 객체일 확률이 높은 경계 박스를 얻는다. 하나의 객체 경계 박스가 정해지면 MI-FL을 이용해 해당 영역의 불변 모멘트 특징을 추출하여 미리 저장하고 학습한다. 이후 검출 과정에서 미리 저장해둔 불면모멘트 특징 정보를 이용해 검출함으로써 회전된 이미지에 대해 기존 방법보다 더 강인한 검출이 가능하다. 기존의 SSD와 MI-FL을 적용한 SSD의 비교를 통해 약 4~5%의 성능 향상을 확인하였다.

이산 코사인 변환을 이용한 형태 특징 추출 기법 (A Technique for Shape Features Extraction Using the Discrete Cosine Transform)

  • 김경수;이영신;김용국;이윤배;김판구
    • 한국정보처리학회논문지
    • /
    • 제5권5호
    • /
    • pp.1357-1366
    • /
    • 1998
  • 본 논문에서는 형태특징추출 알고리즘의 조건인 기하학적 변환에 불변하도록 모멘트 알고리즘을 이용한 간단한 정규화 과정을 수행하고 이산 코사인 변환(Discrete Cosine Transform)을 적용하여 물체의 형태특징을 추출하는 방법을 제안한다. 검색영상 수를 줄이기 위해 인식객체의 이심률(eccentricity)과 원형에 가까운 정도를 나타내는 원형도(circularity)를 검색필터로 사용하였다. 다양한 식물잎을 대상으로 실험한 결과, 이산 코사인 변환을 이용한 특징추출방법이 기존의 푸리에 서술자(Fourier Descriptor)나 모멘트(Moment) 알고리즘을 적용했을 때 보다 인식률이 높음을 확인하였다.

  • PDF

Pattern Recognition with Rotation Invariant Multiresolution Features

  • Rodtook, S.;Makhanov, S.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1057-1060
    • /
    • 2004
  • We propose new rotation moment invariants based on multiresolution filter bank techniques. The multiresolution pyramid motivates our simple but efficient feature selection procedure based on the fuzzy C-mean clustering, combined with the Mahalanobis distance. The procedure verifies an impact of random noise as well as an interesting and less known impact of noise due to spatial transformations. The recognition accuracy of the proposed techniques has been tested with the preceding moment invariants as well as with some wavelet based schemes. The numerical experiments, with more than 30,000 images, demonstrate a tangible accuracy increase of about 3% for low noise, 8% for the average noise and 15% for high level noise.

  • PDF

Cooperative network와 MLP를 이용한 PSRI 특징추출 및 자동표적인식 (A PSRI Feature Extraction and Automatic Target Recognition Using a Cooperative Network and an MLP.)

  • 전준형;김진호;최흥문
    • 전자공학회논문지B
    • /
    • 제33B권6호
    • /
    • pp.198-207
    • /
    • 1996
  • A PSRI (position, scale, and rotation invariant ) feature extraction and automatic target recognition system using a cooperative network and an MLP is proposed. We can extract position invarient features by obtaining the target center using the projection and the moment in preprocessing stage. The scale and rotation invariant features are extracted from the contour projection of the number of edge pixels on each of the concentric circles, which is input to the cooperative network. By extracting the representative PSRI features form the features and their differentiations using max-net and min-net, we can rdduce the number of input neurons of the MLP, and make the resulted automatic target recognition system less sensitive to input variances. Experiments are conduted on various complex images which are shifted, rotated, or scaled, and the results show that the proposed system is very efficient for PSRI feature extractions and automatic target recognitions.

  • PDF

불변 패턴인식 알고리즘의 비교연구 (Comparison of invariant pattern recognition algorithms)

  • 강대성
    • 전자공학회논문지B
    • /
    • 제33B권8호
    • /
    • pp.30-41
    • /
    • 1996
  • This paper presents a comparative study of four pattern recognition algorithms which are invariant to translations, rotations, and scale changes of the input object; namely, object shape features (OSF), geometrica fourier mellin transform (GFMT), moment invariants (MI), and centered polar exponential transform (CPET). Pattern description is obviously one of the most important aspects of pattern recognition, which is useful to describe the object shape independently of translation, rotation, or size. We first discuss problems that arise in the conventional invariant pattern recognition algorithms, or size. We first discuss problems that arise in the coventional invariant pattern recognition algorithms, then we analyze their performance using the same criterion. Computer simulations with several distorted images show that the CPET algorithm yields better performance than the other ones.

  • PDF

Zernike 모멘트와 Wavelet을 이용한 홍채인식 (A Iris Recognition Using Zernike Moment and Wavelet)

  • 최창수;박종천;전병민
    • 한국산학기술학회논문지
    • /
    • 제11권11호
    • /
    • pp.4568-4575
    • /
    • 2010
  • 홍채인식은 홍채의 무늬 패턴 정보를 이용하는 생체인식 기술로 안정성, 보안성과 같은 특징을 가지고 있기 때문에 높은 보안을 요구하는 환경에 특히 적합하다. 최근 들어 홍채정보를 이용하여 출입통제, 정보보안등의 분야에 많이 활용되고 있다. 홍채 특징 추출시 크기, 조명, 회전에 무관한 홍채 특징을 추출하는 것이 바람직하다. 홍채크기 및 조명 문제는 전처리를 통해 쉽게 해결할 수 있지만 회전에 무관한 홍채 특징 추출은 여전히 문제가 된다. 본 논문에서는 회전 보정으로 인한 인식률 및 속도 저하를 개선하기 위해 Zernike 모멘트와 Daubechies Wavelet을 이용한 홍채인식 방법을 제안한다. 제안한 방법은 회전에 불변한 Zernike 모멘트의 통계적 특성을 이용하여 회전된 홍채에 대해서 1단계로 유사홍채를 분류함으로서 홍채인식에 필요한 시간을 단축하였고, 인식성능 역시 기존 방법과 대등함을 보였다. 따라서 제안한 방법이 대용량의 홍채 인식 시스템에 효과적인 적용이 가능함을 확인할 수 있었다.

이미지 검색을 위한 색상 성분 분석 (Color Component Analysis For Image Retrieval)

  • 최영관;최철;박장춘
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.403-410
    • /
    • 2004
  • 최근 의료 영상 분석(Medical Image Analysis)이나 영상 검색(Image Retrieval)을 위한 전처리(Preprocessing) 단계로 영상 분석(Image Analysis)에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 영상 검색에서 색상 성분(Color Component)의 활용 방법을 제안하고자 한다. 이미지를 검색하기 위해 색상 성분을 기반으로 하고, 색상(Color)을 분석하기 위한 기법으로 CLCM(Color Level Co-occurrence Matrix)과 통계적 기법을 이용하고 있다. CLCM은 기하학적 회전 변환(Geometric Rotate Transform)을 통해서 색상 성분을 3차원 공간상에 투영(Projection)하여 공간 관계(Spatial Relationship)로부터 나타나는 분포를 해석하는 방법으로, 본 논문에서 제안하는 주제이다. CLCM은 색상 모델에서 만들어지는 2차원 히스토그램을 지칭하며 색상 모델의 기하학적인 회전 변환을 통해서 생성된다. 그리고 이를 분석하기 위한 방법으로 통계 기법을 활용하고 있다. CLCM과 유사하게 2차원 분포도를 사용하는 GLCM(Gray Level Co-occurrence Matrix)[1]과 불변 모멘트(Invariant Moment)[2,3] 같은 알고리즘은 2차원적인 데이터를 해석하기 위하여 기본적인 통계 기법을 활용하고 있다. 하지만 GLCM과 불변 모멘트가 각각의 도메인에 최적화되어 있다 하더라도 공간 좌표상에 존재하는 불규칙적인 데이터를 완전히 해석할 수는 없다. 즉 GLCM과 불변 모멘트는 기초 통계 기법만을 사용하고 있기 때문에 추출된 특징들의 신뢰성이 낮다는 것이다. 본 논문에서는 이러한 단점을 보완하여 공간 관계를 해석함과 동시에 데이터의 가중치를 해석하기 위해 전형적인 다변량 통계에서 사용하는 주성분 분석(Principal Component Analysis)[4,5]을 이용하고 있다. 그리고 데이터의 정확도를 높이기 위해서 3차원 공간상에 색상 성분을 투영하여 이를 회전시키면서 데이터의 특성을 다각도에서 추출하는 방법을 제시한다.