• Title/Summary/Keyword: intuitive estimation

Search Result 50, Processing Time 0.041 seconds

Exploring the Accuracy and Methods of Estimation on Base Physical Quantities (기본물리량 어림의 정확성 및 방법에 대한 탐색)

  • Song, Jin-Woong;Kim, Hae-Sun
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.1
    • /
    • pp.76-88
    • /
    • 2001
  • This study explored people's accuracy and methods of estimating some base physical quantities, i.e. length, mass, time and temperature. A total of 40 members, ranging from freshmen to professors, of a physics education department of a local university were asked to make two different kinds of estimations, intuitive and operational, on two sets of objects. For intuitive estimation, they were asked to make estimations on four given objects (length - wood chopsticks, mass - rubber eraser, time electric fan, temperature - water in a cup) as soon as they faced with the objects, usually within a few seconds of seeing. For operational estimation, they were allowed to make estimations on a different set of objects (length - plastic rod, mass - lock, time - simple pendulum, temperature - water in a cup) with enough time and they could apply various available methods (e.g. using pencil to estimate the object's length, counting their own pulse rate to estimate time) for the estimation. The findings of this study can be summarized as follows: (1) for length, mass and temperature the intuitive estimations were better performed while for the time estimation the result was the reverse; (2) there was no positive relationship between the amount of physics experience and the accuracy of the estimation; (3) in general, people's accuracy of the length estimation was best performed while their mass estimation was worst performed; (4) people used their own various methods for estimation, esp. using nearby objects around them and applying mental units which have convenient values (e.g. 30cm, 50cm, 1kg, 1 Keun, 1 second).

  • PDF

Estimation of Treatment Effect for Bivariate Censored Survival Data

  • Ahn, Choon-Mo;Park, Sang-Gue
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.1017-1024
    • /
    • 2003
  • An estimation problem of treatment effect for bivariate censored survival data is considered under location shift model between two sample. The proposed estimator is very intuitive and can be obtained in a closed form. Asymptotic results of the proposed estimator are discussed and simulation studies are performed to show the strength of the proposed estimator.

A study on robust regression estimators in heteroscedastic error models

  • Son, Nayeong;Kim, Mijeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1191-1204
    • /
    • 2017
  • Weighted least squares (WLS) estimation is often easily used for the data with heteroscedastic errors because it is intuitive and computationally inexpensive. However, WLS estimator is less robust to a few outliers and sometimes it may be inefficient. In order to overcome robustness problems, Box-Cox transformation, Huber's M estimation, bisquare estimation, and Yohai's MM estimation have been proposed. Also, more efficient estimations than WLS have been suggested such as Bayesian methods (Cepeda and Achcar, 2009) and semiparametric methods (Kim and Ma, 2012) in heteroscedastic error models. Recently, Çelik (2015) proposed the weight methods applicable to the heteroscedasticity patterns including butterfly-distributed residuals and megaphone-shaped residuals. In this paper, we review heteroscedastic regression estimators related to robust or efficient estimation and describe their properties. Also, we analyze cost data of U.S. Electricity Producers in 1955 using the methods discussed in the paper.

FUZZY ESTIMATION OF VEHICLE SPEED USING AN ACCELEROMETER AND WHEEL SENSORS

  • HWANG J. K.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.359-365
    • /
    • 2005
  • The absolute longitudinal speed of a vehicle is estimated by using data from an accelerometer of the vehicle and wheel speed sensors of a standard 50-tooth antilock braking system. An intuitive solution to this problem is, 'When wheel slip is low, calculate the vehicle velocity from the wheel speeds; when wheel slip is high, calculate the vehicle speed by integrating signal of the accelerometer.' The speed estimator weighted with fuzzy logic is introduced to implement the above concept, which is formulated as an estimation method. And the method is improved through experiments by how to calculate speed from acceleration signal and slip ratios. It is verified experimentally to usefulness of estimation speed of a vehicle. And the experimental result shows that the estimated vehicle longitudinal speed has only a $6\%$ worst-case error during a hard braking maneuver lasting a few seconds.

Estimation of Shoulder Flexion Torque and Angle from Surface Electromyography for Physical Human-Machine Interaction (물리적 인간-기계 상호작용을 위한 표면 근전도 신호 기반의 어깨 굴곡 토크 및 각도 추정)

  • Park, Ki-Han;Lee, Dong-Ju;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.663-669
    • /
    • 2011
  • This paper examines methods to estimate torque and angle in shoulder flexion from surface electromyography(sEMG) signals for intuitive and delicate control of robotic assistance device. Five muscles on the upper arm, three for shoulder flexion and two for shoulder extension, were used to offer favorable sEMG recording conditions in the estimation. The methods tested were the mean absolute value (MAV) with linear regression and the artificial neural network (ANN) method. An optimal condition was sought by varying combination of muscles used and the parameters in each method. The estimation performance was evaluated using the correlation values and normalized root mean square error values. In addition, we discussed their possible use as an estimation of motion intent of a user or as a command input in a physical human-machine interaction system.

The application of the Intuitive Method to Evaluate Feasibilities of Railway Project (철도사업에의 직관적 타당성 평가모형 적용)

  • Kim, Hyun-Woong;Hyeon, Jae-Myeong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.437-441
    • /
    • 2010
  • The SOC project such as road and railway performs a preliminary feasibility study according to the priority of the individual projects after establishing the master plans. For a preliminary feasibility study, feasibility evaluation should be performed according to the transport demand estimation and economic analysis. The feasibility of individual project will be performed by focussing on the results of analyzing economic feasibility. In case that analysis of the traffic demand and the economic feasibility every phase is performed, a lot of time and expense will be required in the course of promoting projects. So this study could give help to determine the priority of the project by intuitive method only in the phase to establish the master plan and a preliminary feasibility study.

  • PDF

A Proposal of Modeling Guide of the Unit Space-based Preliminary Cost Estimation in Urban Renewal Mix-Used Development - Case Study on ○○ Transfer Station Complex - (복합용도 개발 도시재생 사업에서의 단위 공간 기반 개산견적 모델링 가이드 제안 - ○○시 ○○역 복합환승센터 사례를 중심으로 -)

  • Kang, Shin-Yeop;Ahn, Jae-Hong;Kim, Ju-Hyung
    • Journal of KIBIM
    • /
    • v.3 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Mix-used development in urban renewal project is done to effectively utilize the limited downtown. Generally unlike a single project, It features placing a large number of different facilities(residential, commercial, business, cultural, etc.) which is each other organically linked. The purpose of this study is to suggest the method of modeling guide for 3D preliminary cost estimation considering visual and intuitive judgement of space in mix-used development Urban Renewal project. In this research, introducing SME(Standard Module and Element) breakdown structure, FID(Finish Identity) for estimating building space unit-based quantity take off was implemented. It could narrow the discrepancy of opinion between the stakeholders with more accurate cost-estimates, comparing to the traditional methods.

Control of Humanoid Robots Using Time-Delay-Estimation and Fuzzy Logic Systems

  • Ahn, Doo Sung
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2020
  • For the requirement of accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Because of the complexity of humanoid robot dynamics, the TDC (time-delay control) is practical because it does not require a dynamic model. However, there occurs a considerable error due to discontinuous non-linearities. To solve this problem, the TDC-FLC (fuzzy logic compensator) is applied to humanoid robots. The applied controller contains three factors: a TDE (time-delay estimation) factor, a desired error dynamic factor, and FLC to suppress the TDE error. The TDC-FLC is easy to execute because it does not require complicated humanoid dynamic calculations and the heuristic fuzzy control rules are intuitive. TDC-FLC is implemented on the whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the TDC-FLC for humanoid robots.

Line of Sight Vector Estimation using UWB for Augmented Reality Based Indoor Location Monitoring System

  • Chun, Sebum;Seo, Jae-Hee;Lee, Sangwoo;Heo, Moon-Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.145-156
    • /
    • 2016
  • A variety of methods for indoor positioning systems have been underway to ensure the safety of emergency rescuers who are working in dangerous situations such as fire fighters. However, since most systems display locations of rescue workers in two-dimension (2D)-based maps, it is difficult for a commander located in the outside to recognize locations of rescuers inside the building intuitively. An augmented reality (AR)-based indoor positioning monitoring system can display locations of rescuer inside the building that can be seen by commanders to help intuitive recognition of positioning. To monitor AR-based indoor positioning, it is necessary to have an estimation technique of line of sight vector of observers. In the present study, an estimation technique of a line of sight vector using ultra-wide band tranceiver installed inside the indoor to trace locations is presented.

Modeling and parameter estimation of a fish-drying control system

  • Sakai, Y.;Wada, K.;Nakamura, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.440-445
    • /
    • 1992
  • The major purpose here is to estimate the drying time required in the fish-drying process employed. The basic element of the prediction of the drying time is the model or the equation, which governs the change in weight. By an intuitive consideration on the mechanism of dehydration, a mathematical model of the fish-drying process is built, which is described by a system of linear differential equations. Further, a modified system of linear differential equations for a model of drying is also proposed for more accurate estimation. The parameter estimation of this system of equations provides the prediction of necessary drying time.

  • PDF