• Title/Summary/Keyword: intrusion sensor

Search Result 93, Processing Time 0.027 seconds

A Tree-Based Routing Algorithm Considering An Optimization for Efficient Link-Cost Estimation in Military WSN Environments (무선 센서 네트워크에서 링크 비용 최적화를 고려한 감시·정찰 환경의 트리 기반 라우팅 알고리즘에 대한 연구)

  • Kong, Joon-Ik;Lee, Jae-Ho;Kang, Ji-Heon;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.637-646
    • /
    • 2012
  • Recently, Wireless Sensor Networks (WSNs) are used in many applications. When sensor nodes are deployed on special areas, where humans have any difficulties to get in, the nodes form network topology themselves. By using the sensor nodes, users are able to obtain environmental information. Due to the lack of the battery capability, sensor nodes should be efficiently managed with energy consumption in WSNs. In specific applications (e.g. in intrusion detections), intruders tend to occur unexpectedly. For the energy efficiency in the applications, an appropriate algorithm is strongly required. In this paper, we propose tree-based routing algorithm for the specific applications, which based on the intrusion detection. In addition, In order to decrease traffic density, the proposed algorithm provides enhanced method considering link cost and load balance, and it establishes efficient links amongst the sensor nodes. Simultaneously, by using the proposed scheme, parent and child nodes are (re-)defined. Furthermore, efficient routing table management facilitates to improve energy efficiency especially in the limited power source. In order to apply a realistic military environment, in this paper, we design three scenarios according to an intruder's moving direction; (1) the intruder is passing along a path where sensor nodes have been already deployed. (2) the intruders are crossing the path. (3) the intruders, who are moving as (1)'s scenario, are certainly deviating from the middle of the path. In conclusion, through the simulation results, we obtain the performance results in terms of latency and energy consumption, and analyze them. Finally, we validate our algorithm is highly able to adapt on such the application environments.

Energy Efficient Distributed Intrusion Detection Architecture using mHEED on Sensor Networks (센서 네트워크에서 mHEED를 이용한 에너지 효율적인 분산 침입탐지 구조)

  • Kim, Mi-Hui;Kim, Ji-Sun;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.151-164
    • /
    • 2009
  • The importance of sensor networks as a base of ubiquitous computing realization is being highlighted, and espicially the security is recognized as an important research isuue, because of their characteristics.Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop security Intrusion Detection System (IDS) that can survive malicious attacks from "insiders" who have access to keying materials or the full control of some nodes, taking their charateristics into consideration. In this perper, we design a distributed and adaptive IDS architecture on sensor networks, respecting both of energy efficiency and IDS efficiency. Utilizing a modified HEED algorithm, a clustering algorithm, distributed IDS nodes (dIDS) are selected according to node's residual energy and degree. Then the monitoring results of dIDSswith detection codes are transferred to dIDSs in next round, in order to perform consecutive and integrated IDS process and urgent report are sent through high priority messages. With the simulation we show that the superiorities of our architecture in the the efficiency, overhead, and detection capability view, in comparison with a recent existent research, adaptive IDS.

Design and Implementation of facility Management System based Ubiquitous (u-기반 시설물 관리 시스템 설계 및 구현)

  • Kim, Jung Jae;Park, Chan Kil
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • The USN is important in technique, unmanned observation using wireless network camera, detection technique that use intrusion detection sensor. But these encrypted data transmission and processing technique through sensor network, method of the staff's location recognition and arrangement aren't serviced still as a integrated system in facility security industry. This paper proposed that improve facility management, the staff present recognition and system efficiency using RFID, USN and wireless camera.

A Walking Vibration Sensing System using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 보행 진동 측정 시스템에 관한 연구)

  • Kim, Jaeki;Yeom, Sanghun;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • In this paper, a walking vibration sensing system (WVS system) using a Fiber Bragg Grating sensor (FBG sensor) is proposed. The seismic part of the FBG sensor was redesigned for sensitivity enhancement. The external excitation was assumed to be the walking cycle of an adult male. The FBG seismic sensor was redesigned using CATIA and ABAQUS such that the sensor's first mode natural frequency is 3.5 Hz (which is a value near the external excitation frequency). Compared with existing walking vibration sensing systems, this newly created system improves sensitivity 15 times. It is also suitable for intrusion detection applications.

Design of Intrusion Detection System using Radar Sensors and Cameras (레이더 센서와 카메라를 이용한 침입 탐지 시스템 설계)

  • Jung, Dong-Hun;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.82-85
    • /
    • 2018
  • 카메라를 이용하여 특정 범위에 객체 침입을 탐지하는 시스템이 많아지고 있다. 하지만 이러한 카메라를 이용한 객체 침입 탐지는 실내에 설치되어 사용되는 경우가 많고, 외부에서 사용할 경우 환경적인 요인(비, 바람 등에 날리는 물체들)에 의해 정확도가 떨어지는 경우가 많다. 또한, 센서만 사용하여 침입을 탐지하는 시스템은 센서의 감지 범위에 따라 설치할 수 있는 공간이 제약되고 일정 크기 이상의 공간에서 사용할 수 없다는 단점이 있다. 본 논문에서 제안하는 침입 탐지 시스템은 레이저, 초음파, 인체감지 센서의 단점인 감지 범위를 보완할 수 있는 레이더 센서와 카메라를 이용하여 감시 영역 내의 침입을 탐지하는 시스템을 설계하였다.

  • PDF

Implementation of Real-time Sensor Monitoring System on Zigbee Module (Zigbee 모듈을 이용한 실시간 센서 모니터링 시스템 구현)

  • Kim, Gwang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.312-318
    • /
    • 2011
  • USN technology will be applied to various fields such as logistics, transportation, government, health, welfare and environment and will be settled down by basic infrastructure of a future society. In this study, we analyzed sensor networks structure based on IEEE 802.15.4 and implemented the sensor monitoring system using Zigbee modules. For implementation of real-time sensor monitoring system, we designed Linux-based development environment and the sensor-specific component. The result of this paper may be utilized in such areas lighting system, intrusion detection, fire detection, detection and notification of abnormal conditions.

Intelligence Security and Surveillance System in Sensor Network Environment Using Integrated Heterogeneous Sensors (이 기종간 통합 센서를 이용한 센서네트워크 환경에서의 지능형 보안감시 시스템)

  • Oh, Suk-Jun;Moon, Seung-Jin;Choi, Sun-O
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.7
    • /
    • pp.551-562
    • /
    • 2013
  • Current CCTV systems, which require continuous monitoring of the screens, have the limitation to detect and respond to the crime scenes in timely manner. Therefore, in recent years, the request for more intlligent surveillance system, with a ubiquitous sensor network, is increasing in order to behave more humanly fashions. Such systems require cllective data processing of the environments based on various sensors. In this article, we suggests a new paradigm based surveillance system which integrates PSD and dual PIR sensors. The proposed system evlves from a existing indoor intrusion detection system which can only identify the intrusion event to a better inteligent system with context awareness. We have conducted the various simulations in order to prove the effectiveness of the proposed system.

Buried Fiber Optic Intrusion Sensor (매설형 광섬유 침입자 센서)

  • Park, Jae-Hee;Kim, Myung-Gyoo;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.1-6
    • /
    • 1996
  • The feasibility of producing a practical buried fiber optic sensor with high sensitivity for detecting intruders is demonstrated. Experiments were carried out with the use of an all fiber Michelson interferometer, the sensing arm of which was buried in sand. When the sensing arm was buried 8 inches deep in sand, the pressure length product required for a half fringe shift in: the sensor output was $1.09\;kPa{\cdot}m$. The relation between the applied weight and the phase change was almost linear. Experimental results indicated that the sensitivity of the optical fiber sensor was sufficient to detect people on foot and vehicles passing over the buried fiber.

  • PDF

Adjacent Matrix-based Hole Coverage Discovery Technique for Sensor Networks

  • Wu, Mary
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.169-176
    • /
    • 2019
  • Wireless sensor networks are used to monitor and control areas in a variety of military and civilian areas such as battlefield surveillance, intrusion detection, disaster recovery, biological detection, and environmental monitoring. Since the sensor nodes are randomly placed in the area of interest, separation of the sensor network area may occur due to environmental obstacles or a sensor may not exist in some areas. Also, in the situation where the sensor node is placed in a non-relocatable place, some node may exhaust energy or physical hole of the sensor node may cause coverage hole. Coverage holes can affect the performance of the entire sensor network, such as reducing data reliability, changing network topologies, disconnecting data links, and degrading transmission load. It is possible to solve the problem that occurs in the coverage hole by finding a coverage hole in the sensor network and further arranging a new sensor node in the detected coverage hole. The existing coverage hole detection technique is based on the location of the sensor node, but it is inefficient to mount the GPS on the sensor node having limited resources, and performing other location information processing causes a lot of message transmission overhead. In this paper, we propose an Adjacent Matrix-based Hole Coverage Discovery(AMHCD) scheme based on connectivity of neighboring nodes. The method searches for whether the connectivity of the neighboring nodes constitutes a closed shape based on the adjacent matrix, and determines whether the node is an internal node or a boundary node. Therefore, the message overhead for the location information strokes does not occur and can be applied irrespective of the position information error.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.