• Title/Summary/Keyword: intrinsic mode function

검색결과 38건 처리시간 0.027초

직교화 기법을 이용한 앙상블 경험적 모드 분해법의 고유 모드 함수와 모드 직교성 (Intrinsic Mode Function and its Orthogonality of the Ensemble Empirical Mode Decomposition Using Orthogonalization Method)

  • 손수덕;하준홍;비자야 P. 포크렐;이승재
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.101-108
    • /
    • 2019
  • In this paper, the characteristic of intrinsic mode function(IMF) and its orthogonalization of ensemble empirical mode decomposition(EEMD), which is often used in the analysis of the non-linear or non-stationary signal, has been studied. In the decomposition process, the orthogonal IMF of EEMD was obtained by applying the Gram-Schmidt(G-S) orthogonalization method, and was compared with the IMF of orthogonal EMD(OEMD). Two signals for comparison analysis are adopted as the analytical test function and El Centro seismic wave. These target signals were compared by calculating the index of orthogonality(IO) and the spectral energy of the IMF. As a result of the analysis, an IMF with a high IO was obtained by GSO method, and the orthogonal EEMD using white noise was decomposed into orthogonal IMF with energy closer to the original signal than conventional OEMD.

경험 모드 분리법을 이용한 감쇠 진동 신호의 분석 (Analysis of Damped Vibration Signal Using Empirical Mode Decomposition Method)

  • 이인재;이종민;황요하;허건수
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.192-198
    • /
    • 2005
  • Empirical mode decomposition(EMD) method has been recently proposed to analyze non-linear and non-stationary data. This method allows the decomposition of one-dimensional signals into intrinsic mode functions(IMFs) and is used to calculate a meaningful multi-component instantaneous frequency. In this paper, it is assumed that each mode of damped vibration signal could be well separated in the form of IMF by EMD. In this case, we can have a new powerful method to calculate natural frequencies and dampings from damped vibration signal which usually has multiple modes. This proposed method has been verified by both simulation and experiment. The results by EMD method whichhas used only output vibration data are almost identical to the results by FRF method which has used both input and output data, thereby proving usefulness and accuracy of the proposed method.

경험적 모드 분해법과 인공 신경 회로망을 적용한 베어링 상태 분류 기법 (A Development on the Fault Prognosis of Bearing with Empirical Mode Decomposition and Artificial Neural Network)

  • 박병희;이창우
    • 한국정밀공학회지
    • /
    • 제33권12호
    • /
    • pp.985-992
    • /
    • 2016
  • Bearings have various uses in industrial equipment. The lifetime of bearings is often lesser than anticipated at the time of purchase, due to environmental wear, processing, and machining errors. Bearing conditions are important, since defects and damage can lead to significant issues in production processes. In this study, we developed a method to diagnose faults in the bearing conditions. The faults were determined using kurtosis, average, and standard deviation. An intrinsic mode function for the data from the selected axis was extracted using empirical mode decomposition. The intrinsic mode function was obtained based on the frequency, and the learning data of ANN (Artificial Neural Network) was concluded, following which the normal and fault conditions of the bearing were classified.

Empirical mode decomposition based on Fourier transform and band-pass filter

  • Chen, Zheng-Shou;Rhee, Shin Hyung;Liu, Gui-Lin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.939-951
    • /
    • 2019
  • A novel empirical mode decomposition strategy based on Fourier transform and band-pass filter techniques, contributing to efficient instantaneous vibration analyses, is developed in this study. Two key improvements are proposed. The first is associated with the adoption of a band-pass filter technique for intrinsic mode function sifting. The primary characteristic of decomposed components is that their bandwidths do not overlap in the frequency domain. The second improvement concerns an attempt to design narrowband constraints as the essential requirements for intrinsic mode function to make it physically meaningful. Because all decomposed components are generated with respect to their intrinsic narrow bandwidth and strict sifting from high to low frequencies successively, they are orthogonal to each other and are thus suitable for an instantaneous frequency analysis. The direct Hilbert spectrum is employed to illustrate the instantaneous time-frequency-energy distribution. Commendable agreement between the illustrations of the proposed direct Hilbert spectrum and the traditional Fourier spectrum was observed. This method provides robust identifications of vibration modes embedded in vibration processes, deemed to be an efficient means to obtain valuable instantaneous information.

경험적 모드분해법을 이용한 기상인자와 우리나라 강수 및 기온의 상관관계 분석 : I. 자료의 분해 및 특성 분석 (Correlation analysis between climate indices and Korean precipitation and temperature using empirical mode decomposition : I. Data decomposition and characteristic analysis)

  • 안시권;최원영;김태림;허준행
    • 한국수자원학회논문집
    • /
    • 제49권3호
    • /
    • pp.197-205
    • /
    • 2016
  • 최근 기후변화로 인한 자연재해가 증가하면서 강수 및 기온자료의 시계열에 대한 변동성과 추세를 분석하여 그 변화를 예측하는 연구의 필요성이 점점 커지고 있다. 하지만 강수나 기온의 경우 복합적인 요소에 의해 변동이 일어나 자료의 변동성이 매우 심하고 너무 많은 요소를 포함하게 되어 그 특성을 정확히 판단하기가 쉽지 않다. 따라서 자료의 시계열을 분해하게 되면 각 특성을 가진 요소를 추출할 수 있으므로, 정확한 변동 특성을 파악할 수 있다. 본 연구에서는 우리나라 강수 및 기온자료를 경험적 모드분해법(Empirical Mode Decomposition, EMD)을 통해 주기별로 분해하여 각각의 내재모드함수(Intrinsic Mode Function, IMF)를 추출하였다. 또한, 추출된 내재모드함수의 에너지 밀도를 이용한 유의성 검정을 통해 원자료로부터 유의미한 자료를 포함하고 있는 내재모드함수를 선별하고, 이들의 주기성, 경향성을 분석하였다.

An improved time-domain approach for the spectra-compatible seismic motion generation considering intrinsic non-stationary features

  • Feng Cheng;Jianbo Li;Zhixin Ding;Gao Lin
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.968-980
    • /
    • 2023
  • The dynamic structural responses are sensitive to the time-frequency content of seismic waves, and seismic input motions in time-history analysis are usually required to be compatible with design response spectra according to nuclear codes. In order to generate spectra-compatible input motions while maintaining the intrinsic non-stationarity of seismic waves, an improved time-domain approach is proposed in this paper. To maintain the nonstationary characteristics of the given seismic waves, a new time-frequency envelope function is constructed using the Hilbert amplitude spectrum. Based on the intrinsic mode functions (IMFs) obtained from given seismic waves through variational mode decomposition, a new corrective time history is constructed to locally modify the given seismic waves. The proposed corrective time history and time-frequency envelope function are unique for each earthquake records as they are extracted from the given seismic waves. In addition, a dimension reduction iterative technique is presented herein to simultaneously superimpose corrective time histories of all the damping ratios at a specific frequency in the time domain according to optimal weights, which are found by the genetic algorithm (GA). Examples are presented to show the capability of the proposed approach in generating spectra-compatible time histories, especially in maintaining the nonstationary characteristics of seismic records. And numerical results reveal that the modified time histories generated by the proposed method can obtain similar dynamic behaviors of AP1000 nuclear power plant with the natural seismic records. Thus, the proposed method can be efficiently used in the design practices.

A hybrid algorithm based on EEMD and EMD for multi-mode signal processing

  • Lin, Jeng-Wen
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.813-831
    • /
    • 2011
  • This paper presents an efficient version of Hilbert-Huang transform for nonlinear non-stationary systems analyses. An ensemble empirical mode decomposition (EEMD) is introduced to alleviate the problem of mode mixing between intrinsic mode functions (IMFs) decomposed by EMD. Yet the problem has not been fully resolved when a signal of a similar scale resides in different IMF components. Instead of using a trial and error method to select the "best" outcome generated by EEMD, a hybrid algorithm based on EEMD and EMD is proposed for multi-mode signal processing. The developed approach comprises the steps from a bandpass filter design for regrouping modes of the IMFs obtained from EEMD, to the mode extraction using EMD, and to the assessment of each mode in the marginal spectrum. A simulated two-mode signal is tested to demonstrate the efficiency and robustness of the approach, showing average relative errors all equal to 1.46% for various noise levels added to the signal. The developed approach is also applied to a real bridge structure, showing more reliable results than the pure EMD. Discussions on the mode determination are offered to explain the connection between modegrouping form on the one hand, and mode-grouping performance on the other.

EMD 기반의 유도 전동기 고장 진단 시스템 개발 (Development of EMD-based Fault Diagnosis System for Induction Motor)

  • 강중순
    • 한국소음진동공학회논문집
    • /
    • 제24권9호
    • /
    • pp.675-681
    • /
    • 2014
  • This paper proposes a fault diagnosis system for an induction motor. This system uses empirical mode decomposition(EMD) to extract fault signatures and multi-layer perceptron(MLP) neural network to facilitate an accurate fault diagnosis. EMD can not only decompose a signal adaptively but also provide intrinsic mode functions(IMFs) containing natural oscillatory modes of the signal. However, every IMF does not represent fault signature, an IMF selection algorithm based on harmonics and their energy of each IMF is proposed. The selected IMFs are utilized for fault classification using MLP and this system shows approximately 98 % diagnosis accuracy for the fault vibration signal of the induction motor.

코스피 예측을 위한 EMD를 이용한 혼합 모형 (EMD based hybrid models to forecast the KOSPI)

  • 김효원;성병찬
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.525-537
    • /
    • 2016
  • 본 연구에서는 시계열 자료의 비정상성과 비선형성과 같은 복잡성을 효과적으로 포용할 수 있는 경험적모드분해법(empirical mode decomposition; EMD)을 토대로 시계열 자료의 분석 및 예측을 위한 혼합(hybrid) 모형을 연구한다. EMD에 의하여 생성되는 내재모드함수(intrinsic mode function; IMF)는 해석 및 예측의 편리성을 개선하기 위하여 누적에너지의 개념을 사용하여 그룹화하였으며, 그룹화된 IMF 및 residue의 성분들은 그 성질에 따라서 ARIMA 모형 및 지수평활법과 결합된 혼합 모형으로 예측된다. 제안된 방법은 일별 코스피 지수의 예측을 위해서 적용하였다. 다양한 형태의 혼합 모형을 사용하여 코스피 지수를 예측하였으며 전통적인 예측 방법과 비교하였다. 분석 결과, 그룹화된 성분들은 코스피 지수의 움직임을 단기적, 중기적, 장기적으로 해석하는데 편리함을 주었으며, 그룹화된 IMF 및 residue를 각각 ARIMA 모형과 지수평활법으로 조합한 혼합 모형이 우수한 예측력을 보여주었다.

Multi-variate Empirical Mode Decomposition (MEMD) for ambient modal identification of RC road bridge

  • Mahato, Swarup;Hazra, Budhaditya;Chakraborty, Arunasis
    • Structural Monitoring and Maintenance
    • /
    • 제7권4호
    • /
    • pp.283-294
    • /
    • 2020
  • In this paper, an adaptive MEMD based modal identification technique for linear time-invariant systems is proposed employing multiple vibration measurements. Traditional empirical mode decomposition (EMD) suffers from mode-mixing during sifting operations to identify intrinsic mode functions (IMF). MEMD performs better in this context as it considers multi-channel data and projects them into a n-dimensional hypercube to evaluate the IMFs. Using this technique, modal parameters of the structural system are identified. It is observed that MEMD has superior performance compared to its traditional counterpart. However, it still suffers from mild mode-mixing in higher modes where the energy contents are low. To avoid this problem, an adaptive filtering scheme is proposed to decompose the interfering modes. The Proposed modified scheme is then applied to vibrations of a reinforced concrete road bridge. Results presented in this study show that the proposed MEMD based approach coupled with the filtering technique can effectively identify the parameters of the dominant modes present in the structural response with a significant level of accuracy.