• Title/Summary/Keyword: intraoral scanner

Search Result 124, Processing Time 0.015 seconds

Fabrication of complete denture using digital technology in patient with mandibular deviation: a case report (하악 편위 환자에서 디지털 방식을 이용한 총의치 제작 증례)

  • Lee, Eunsu;Park, Juyoung;Park, Chan;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sangwon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.1
    • /
    • pp.34-41
    • /
    • 2022
  • Recently, digital technology and computer-aided design/computer-aided manufacturing (CAD/CAM) environment have changed the clinician treatment method in the fabrication of dentures. The denture manufacturing method with CAD/CAM technology simplifies the treatment and laboratory process to reduce the occurrence of errors and provides clinical efficiency and convenience. In this case, complete dentures were fabricated using stereolithography (SLA)-based 3D printing in patient with mandibular deviation. Recording base were produced in a digital model obtained with an intraoral scanner, and after recording a jaw relation in the occlusal rim, a definitive impression was obtained with polyvinyl siloxane impression material. In addition, facial scan data with occlusal rim was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a Food and Drug Administration (FDA)-approved liquid photocurable resin. The denture showed adequate retention, support and stability, and results were satisfied functionally and aesthetically.

Digital immediate implantation and aesthetic immediate loading on maxillary incisor displaced due to root fracture: a case report (치근파절로 변위된 상악 중절치의 디지털을 이용한 즉시 임플란트 식립 및 심미 수복 증례)

  • Jieun Song;Songyi Park;Chan Park;Kwidug Yun;Hyun-Pil Lim;Sangwon Park
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.267-275
    • /
    • 2023
  • To obtain better esthetic results when immediately placing a dental implant, the soft tissue surrounding the implant must be conditioned during healing of the extraction socket. To this end, the emergence profile can be customized through immediate restoration of the provisional prosthesis, and good clinical results can be obtained at the time of definitive restoration in the future, resulting in high patient satisfaction. In this case, horizontal root fracture occurred after trauma to both maxillary central incisors. Immediate implant placement and loading was planned considering aesthetics and alveolar bone condition. By taking an impression using a digital intraoral scanner, a digital diagnostic wax-up was performed to make a more aesthetic prosthesis without applying external force to the traumatized teeth. Based on this, the ideal placement location was determined and immediate implant placement was performed using a 3D printed surgical guide. The provisional prosthesis was restored 5 days after placement, and the definitive zirconia crown was restored through soft tissue conditioning and customization using the shape of the provisional prosthesis for 3 months.

3D analysis of soft tissue around implant after flap folding suture (Flap folding suture를 활용한 판막의 고정에 따른 임플란트 주변 연조직 3차원 부피 변화 관찰)

  • Jung, Sae-Young;Kang, Dae-Young;Shin, Hyun-Seung;Park, Jung-Chul
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.3
    • /
    • pp.130-137
    • /
    • 2021
  • Purpose: The various suture techniques can be utilized in order to maximize the keratinized tissue healing around dental implants. The aim of this study is to compare the soft tissue healing pattern between two different suture techniques after implant placement. Materials and Methods: 15 patients with 18 implants were enrolled in this study. Simple implant placement without any additional bone graft was performed. Two different suture techniques were used to tug in the mobilized flap near the healing abutment after paramarginal flap design. Digital intraoral scan was performed at baseline, post-operation, stitch out, and 3 months after operation. The scan data were aligned using multiple points such as cusp, fossa of adjacent teeth, and/or healing abutment. After subtracting scan data at baseline with other time-point results, closed space indicating volume increment of peri-implant mucosa was selected. The volume of the close space was measured in mm3. The volume between two suture techniques at three time-points was compared using nonparametric rank-based analysis. Results: Healing was uneventful in both groups. Both suture technique groups showed increased soft tissue volume immediately after surgery. The amount of volume increment significantly decreased after 3 months (P < 0.001). Flap folding suture group showed higher median of volume increment than interrupted suture group after 3 months without any statistical significance (P > 0.05). Conclusion: After paramarginal flap reflection, the raised flaps stabilized by flap folding suture showed relatively higher volume maintenance after 3-month healing period. However, further studies are warranted.

Marginal and internal fit of interim crowns fabricated with 3D printing and milling method (3D 프린팅 및 밀링 방법으로 제작된 임시 보철물 적합도 비교 분석)

  • Son, Young-Tak;Son, KeunBaDa;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.254-261
    • /
    • 2020
  • Purpose: The purpose of this study was to assess the marginal and internal fit of interim crowns fabricated by two different manufacturing method (subtractive manufacturing technology and additive manufacturing technology). Materials and Methods: Forty study models were fabricated with plasters by making an impression of a master model of the maxillary right first molar for ceramic crown. On each study model, interim crowns (n = 40) were fabricated using three types of 3D printers (Meg-printer 2; Megagen, Zenith U; Dentis, and Zenith D; Dentis) and one type milling machine (imes-icore 450i; imes-icore GmbH). The internal of the interim crowns were filled with silicon and fitted to the study model. Internal scan data was obtained using an intraoral scanner. The fit of interim crowns were evaluated in the margin, absolute margin, axial, cusp, and occlusal area by using the superimposition of 3D scan data (Geomagic control X; 3D Systems). The Kruskal-wallis test, Mann-Whitney U test and Bonferroni correction method were used to compare the results among groups (α = 0.05). Results: There was no significant difference in the absolute marginal discrepancy of the temporary crown manufactured by three 3D printers and one milling machine (P = 0.812). There was a significant difference between the milling machine and the 3D printer in the axial and occlusal area (P < 0.001). The temporary crown with the milling machine showed smaller axial gap and higher occlusal gap than 3D printer. Conclusion: Since the marginal fit of the temporary crown produced by three types of 3D printers were all with in clinically acceptable range (< 120 ㎛), it can be sufficiently used for the fabrication of the temporary crown.