• 제목/요약/키워드: intracellular reactive oxygen species

검색결과 557건 처리시간 0.026초

Curcumin Inhibits MHCC97H Liver Cancer Cells by Activating ROS/TLR-4/Caspase Signaling Pathway

  • Li, Pei-Min;Li, Yu-Liang;Liu, Bin;Wang, Wu-Jie;Wang, Yong-Zheng;Li, Zheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2329-2334
    • /
    • 2014
  • Curcumin can inhibit proliferation of liver cancer cells by inducing apoptosis, but the specific signaling pathways involved are not completely clear. Here, we report that curcumin inhibited proliferation of MHCC97H liver cancer cells by induction of apoptosis in a concentration dependent manner via stimulating intracellular reactive oxygen species (ROS) generation. Also, we showed that increased intracellular ROS formation activated the TLR-4/MyD-88 signaling pathway, resulting in activation of caspase-8 and caspase-3, which eventually led to apoptosis in MHCC97H cells. These results showed that as an prooxidant, curcumin exerts anti-cancer effects by inducing apoptosis via the TLR-4/MyD-88 signaling pathway.

Detection of Mitochondrial Reactive Oxygen Species in Living Rat Trigeminal Caudal Neurons

  • Lee, Hae In;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제40권2호
    • /
    • pp.103-109
    • /
    • 2015
  • Growing evidence suggests that mitochondrial reactive oxygen species (ROS) are involved in various pain states. This study was performed to investigate whether ROS-induced changes in neuronal excitability in trigeminal subnucleus caudalis are related to ROS generation in mitochondria. Confocal scanning laser microscopy was used to measure ROS-induced fluorescence intensity in live rat trigeminal caudalis slices. The ROS level increased during the perfusion of malate, a mitochondrial substrate, after loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), an indicator of the intracellular ROS; the ROS level recovered to the control condition after washout. When pre-treated with phenyl N-tert-butylnitrone (PBN) and 4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (TEMPOL), malate-induced increase of ROS level was suppressed. To identify the direct relation between elevated ROS levels and mitochondria, we applied the malate after double-loading of $H_2DCF-DA$ and chloromethyl-X-rosamine (CMXRos; MitoTracker Red), which is a mitochondria-specific fluorescent probe. As a result, increase of both intracellular ROS and mitochondrial ROS were observed simultaneously. This study demonstrated that elevated ROS in trigeminal subnucleus caudalis neuron can be induced through mitochondrial-ROS pathway, primarily by the leakage of ROS from the mitochondrial electron transport chain.

Tea Flavonoids Induced Differentiation of Peripheral Blood-derived Mononuclear Cells into Peripheral Blood-derived Endothelial Progenitor Cells and Suppressed Intracellular Reactive Oxygen Species Level of Peripheral Blood-derived Endothelial Progenitor Cells

  • Widowati, Wahyu;Wijaya, Laura;Laksmitawati, Dian Ratih;Widyanto, Rahma Micho;Erawijantari, Pande Putu;Fauziah, Nurul;Bachtiar, Indra;Sandra, Ferry
    • Natural Product Sciences
    • /
    • 제22권2호
    • /
    • pp.87-92
    • /
    • 2016
  • Endothelial dysfunction in atherosclerosis is associated with increasing oxidative stress that could be reversed by antioxidant. Therefore epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC) and catechin (C) of tea flavonoids were investigated for their roles in regenerating endothelial cell. Peripheral blood mononuclear cells (PB-MNCs) were isolated, plated and cultured in medium with/without treatment of EGCG, ECG, EGC and C. Results showed that among all EGCG, ECG, EGC and C concentrations tested, $12.5{\mu}mol/L$ was not cytotoxic for peripheral blood-derived endothelial progenitor cells (PB-EPCs). Treatment of EGCG, ECG, EGC or C increased the percentages of CD34, CD133, VEGFR-2 expressions and suppressed hydrogen peroxide-induced percentages of reactive oxygen species (ROS) level in PB-EPCs. Taken together, our current results showed that EGCG, ECG, EGC or C of tea flavonoids could induce differentiation of PB-MNCs into PB-EPCs as well as protect PB-EPCs from oxidative damage by suppresing the intracellular ROS levels.

Cell Death by Polyvinylpyrrolidine-Coated Silver Nanoparticles is Mediated by ROS-Dependent Signaling

  • Kang, Kyeong-Ah;Jung, Hye-Youn;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • 제20권4호
    • /
    • pp.399-405
    • /
    • 2012
  • Silver nanoparticles (AgNPs) are widely used nanoparticles and they are mainly used in antibacterial and personal care products. In this study, we evaluated the effect of AgNPs on cell death induction in the murine dendritic cell line DC2.4. DC2.4 cells exposed to AgNPs showed a marked decrease in cell viability and an induction of lactate dehydrogenase (LDH) leakage in a time- and dose-dependent manner. In addition, AgNPs promoted reactive oxygen species (ROS)-dependent apoptosis and AgNP-induced ROS triggered a decrease in mitochondrial membrane potential. The activation of the intracellular signal transduction pathway was also observed in cells cultured with AgNPs. Taken together, our data demonstrate that AgNPs are able to induce a cytotoxic effect in DCs through ROS generation. This study provides important information about the safety of AgNPs that may help in guiding the development of nanotechnology applications.

Deterioration in the fertilization capability of boar spermatozoa upon exposure to mancozeb

  • Adikari Arachchige Dilki Indrachapa Adikari;Seung-Tae Moon;Young-Joo Yi
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.259-267
    • /
    • 2022
  • Although pesticides are recognized as necessary substances to improve agricultural production, exposure to pesticides is known to have a direct or indirect adverse effect on the reproductive function of mammals. The present study examines the effects of mancozeb, a well-known fungicide, on the fertility capacity of spermatozoa. Boar spermatozoa exposed to varying concentrations of mancozeb (0.01 - 0.5 µM) were evaluated for motility, motion kinetic parameters, viability, acrosome integrity and the generation of intracellular reactive oxygen species (ROS) after 30 min or 2 hrs of incubation. A significant reduction in the motility of spermatozoa was observed upon exposure to mancozeb. Similarly, there was a significant reduction of the motion kinematics of sperm treated with mancozeb as compared to untreated controls (p < 0.05). The sperm viability percentage and acrosome integrity also showed dose-dependent decreases upon exposure to mancozeb. High concentrations of mancozeb (0.2 - 0.5 µM) induced higher levels of intracellular ROS production, which resulted in the loss of the sperm membrane and decreased sperm motility due to oxidative stress. Taken together, the results here indicate that direct exposure to mancozeb affects the sperm fertility capacity. Hence, careful research that examines the interaction between reproduction and environmental toxins is crucial to prevent fertility disorders in animals.

Metformin Induces Lipogenesis and Apoptosis in H4IIE Hepatocellular Carcinoma Cells

  • Deokbae Park;Sookyoung Lee;Hyejin Boo
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권2호
    • /
    • pp.77-89
    • /
    • 2023
  • Metformin is the most widely used anti-diabetic drug that helps maintain normal blood glucose levels primarily by suppressing hepatic gluconeogenesis in type II diabetic patients. We previously found that metformin induces apoptotic death in H4IIE rat hepatocellular carcinoma cells. Despite its anti-diabetic roles, the effect of metformin on hepatic de novo lipogenesis (DNL) remains unclear. We investigated the effect of metformin on hepatic DNL and apoptotic cell death in H4IIE cells. Metformin treatment stimulated glucose consumption, lactate production, intracellular fat accumulation, and the expressions of lipogenic proteins. It also stimulated apoptosis but reduced autophagic responses. These metformin-induced changes were clearly reversed by compound C, an inhibitor of AMP-activated protein kinase (AMPK). Interestingly, metformin massively increased the production of reactive oxygen species (ROS), which was completely blocked by compound C. Metformin also stimulated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Finally, inhibition of p38MAPK mimicked the effects of compound C, and suppressed the metformin-induced fat accumulation and apoptosis. Taken together, metformin stimulates dysregulated glucose metabolism, intracellular fat accumulation, and apoptosis. Our findings suggest that metformin induces excessive glucose-induced DNL, oxidative stress by ROS generation, activation of AMPK and p38MAPK, suppression of autophagy, and ultimately apoptosis.

Involvement of NOX2-derived ROS in human hepatoma HepG2 cell death induced by Entamoeba histolytica

  • Young Ah Lee ;Myeong Heon Shin
    • Parasites, Hosts and Diseases
    • /
    • 제61권4호
    • /
    • pp.388-396
    • /
    • 2023
  • Entamoeba histolytica is an enteric tissue-invasive protozoan parasite causing amoebic colitis and liver abscesses in humans. Amoebic contact with host cells activates intracellular signaling pathways that lead to host cell death via generation of caspase-3, calpain, Ca2+ elevation, and reactive oxygen species (ROS). We previously reported that various NADPH oxidases (NOXs) are responsible for ROS-dependent death of various host cells induced by amoeba. In the present study, we investigated the specific NOX isoform involved in ROS-dependent death of hepatocytes induced by amoebas. Co-incubation of hepatoma HepG2 cells with live amoebic trophozoites resulted in remarkably increased DNA fragmentation compared to cells incubated with medium alone. HepG2 cells that adhered to amoebic trophozoites showed strong dichlorodihydrofluorescein diacetate (DCF-DA) fluorescence, suggesting intracellular ROS accumulation within host cells stimulated by amoebic trophozoites. Pretreatment of HepG2 cells with the general NOX inhibitor DPI or NOX2-specific inhibitor GSK 2795039 reduced Entamoeba-induced ROS generation. Similarly, Entamoeba-induced LDH release from HepG2 cells was effectively inhibited by pretreatment with DPI or GSK 2795039. In NOX2-silenced HepG2 cells, Entamoeba-induced LDH release was also significantly inhibited compared with controls. Taken together, the results support an important role of NOX2-derived ROS in hepatocyte death induced by E. histolytica.

Targeting Cellular Antioxidant Enzymes for Treating Atherosclerotic Vascular Disease

  • Kang, Dong Hoon;Kang, Sang Won
    • Biomolecules & Therapeutics
    • /
    • 제21권2호
    • /
    • pp.89-96
    • /
    • 2013
  • Atherosclerotic vascular dysfunction is a chronic inflammatory process that spreads from the fatty streak and foam cells through lesion progression. Therefore, its early diagnosis and prevention is unfeasible. Reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerotic vascular disease. Intracellular redox status is tightly regulated by oxidant and antioxidant systems. Imbalance in these systems causes oxidative or reductive stress which triggers cellular damage or aberrant signaling, and leads to dysregulation. Paradoxically, large clinical trials have shown that non-specific ROS scavenging by antioxidant vitamins is ineffective or sometimes harmful. ROS production can be locally regulated by cellular antioxidant enzymes, such as superoxide dismutases, catalase, glutathione peroxidases and peroxiredoxins. Therapeutic approach targeting these antioxidant enzymes might prove beneficial for prevention of ROS-related atherosclerotic vascular disease. Conversely, the development of specific antioxidant enzyme-mimetics could contribute to the clinical effectiveness.

Nonthermal Atmospheric Pressure Plasmas and their Applications to Plasma Bioscience and Medicines

  • 최은하
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.56.2-56.2
    • /
    • 2015
  • Nonthermal Atmospheric Pressure Plasmas and their Applications to Plasma Bioscience and Medicines have been introduced for next generation human healthcare's quantum developments. Various kinds of nonthermal atmospheric pressure plasmas have been introduced and their electron temperature and plasma densities along with reactive oxygen and nitrogen species have been diagnosed and analyzed for biological cell interactions, especially, used in Plasma Bioscience Research Center (PBRC), Korea. Herein, we have also introduced the plasma-initiated ultraviolet photolysis, which might be a generation mechanism for the reactive oxygen and nitrogen species (RONS) intracellular and extracellular regions inside the liquid when the plasma has been bombarded onto the water. Finally we have investigated the interactions of these RONS with the various cancer cells resulting in apoptotic cell death.

  • PDF

Glutathione Depletion by L-Buthionine-S,R-Sulfoximine Induces Apoptosis of Cardiomyocytes through Activation of PKC-δ

  • Kim, Young-Ae;Kim, Mi-Young;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • 제21권5호
    • /
    • pp.358-363
    • /
    • 2013
  • In the present study, we investigated the effect of intracellular glutathione (GSH) depletion in heart-derived H9c2 cells and its mechanism. L-buthionine-S,R-sulfoximine (BSO) induced the depletion of cellular GSH, and BSO-induced reactive oxygen species (ROS) production was inhibited by glutathione monoethyl ester (GME). Additionally, GME inhibited BSO-induced caspase-3 activation, annexin V-positive cells, and annexin V-negative/propidium iodide (PI)-positive cells. Treatment with rottlerin completely blocked BSO-induced cell death and ROS generation. BSO-induced GSH depletion caused a translocation of PKC-${\delta}$ from the cytosol to the membrane fraction, which was inhibited by treatment with GME. From these results, it is suggested that BSO-induced depletion of cellular GSH causes an activation of PKC-${\delta}$ and, subsequently, generation of ROS, thereby inducing H9c2 cell death.