• 제목/요약/키워드: intracellular oxidative stress

검색결과 391건 처리시간 0.023초

Chemical composition, antioxidant potential and cyto-protecting activity of essential oil of Liriodendron tulipifera L. leaves

  • Yadav, Anil Kumar;Kim, Sang Ho;Kang, Sun Chul
    • 대한본초학회지
    • /
    • 제30권4호
    • /
    • pp.1-9
    • /
    • 2015
  • Objectives : The present study was under taken to characterize chemical composition, antioxidant and cyto-protecting capacity of essential oil obtained from leaves of Liriodendron tulipifera L. Methods : Essential oil from the leafof L. tulipifera L. (EOLL) was extracted by hydro-distillation process and further its chemical composition was evaluated by GC-MS analysis. The in vitro antioxidant potential of the EOLL was determined by DPPH , ABTS ●+, superoxide and nitric oxide free radical scavenging activity using different concentrations in the range of 50-800 μg/mL. In addition, cyto-protecting property of the EOLLwas determined by MTT assay on Raw 264.7 macrophage cells challenged with hydrogen peroxide (H 2 O 2 ). Results : The result of GC-MS analysis showed presence of 34 volatile compounds, principally germacrene D, spathulenol, and α -cadinol in EOLL. The in vitro antioxidant assays of EOLL at the highest used concentration of 800 μg/mL showed 81.62, 84.29, 83.59 and 58.59% inhibition of DPPH , ABTS ●+, superoxide, and nitric oxide radicals, respectively. It also showed ferric reducing ability with 1310.04 mM Fe (II)/g of essential oil. The EOLL at three different concentrations (200, 400 and 800 μg/mL) protected the cells from H 2 O 2 -induced cell damage through scavenging intracellular ROS. Conclusion : The findings from the study suggest that essential oil isolated from leaves of L tulipifera L. is a potent sources of natural antioxidants, which could be used to treat the diseases associated with oxidative stress condition.

Anti-Oxidant and Anti-Adipogenic Effects of Ethanol Extracts from Wheat Germ and Wheat Germ Fermented with Aspergillus oryzae

  • Park, Euna;Kim, Hae Ok;Kim, Gyo-Nam;Song, Ji-Hye
    • Preventive Nutrition and Food Science
    • /
    • 제20권1호
    • /
    • pp.29-37
    • /
    • 2015
  • Most of the wheat germ in cereal grains is removed during the milling process. Various physiological effects have been reported for bioactive substances in wheat germ such as phenolic acids and flavonoids. In this study, the antioxidant and anti-adipogenic effects of ethanol extracts from wheat germ (WGE) and wheat germ fermented with Aspergillus oryzae (F-WGE) were investigated in HepG2 and 3T3-L1 cells. The anti-oxidant activity of F-WGE was demonstrated by a dose-dependent increase in the enhanced scavenging capacity of hydroxyl radicals and $Cu^{2+}$-chelating activity compared to WGE. WGE and F-WGE treatment at doses between 10 and $400{\mu}g/mL$ did not affect the viability of HepG2 and 3T3-L1 cells. Intracellular ROS levels from $Cu^{2+}$-induced oxidative stress were significantly decreased by F-WGE treatment in HepG2 cells compared to WGE. Lipid accumulation was increased in 3T3-L1 adipocytes by $100{\mu}M$ $Fe^{2+}$ treatment, but the accumulation was strongly inhibited by $100{\mu}g/mL$ of WGE and F-WGE treatment. These results suggest that changes in bioactive substances during the fermentation of wheat germ can potentiate scavenging activities against transition metal-induced oxidative stress and lipid accumulation in 3T3-L1 adipocytes. Therefore, we propose that F-WGE is a novel food materials and provided scientific evidences for its efficacy in the development of functional foods.

비만 마우스 간의 항산화시스템에 대한 바나듐 함유 제주지하수의 증강효과 (Consumption of Jeju Ground Water Containing Vanadium Components Enhances Hepatic Antioxidant Defense Systems in ob/ob Mice)

  • 김아름다슬;유호진;현진원
    • 생명과학회지
    • /
    • 제22권1호
    • /
    • pp.1-6
    • /
    • 2012
  • 비만 마우스의 산화적 스트레스에 대해 바나듐 함유 제주 지하수에 대한 연구로서, 제주 지하수는 수도수 처리군보다 비만 마우스 간의 과산화 지질을 감소시켰으며, superoxide dismutase, catalase, 그리고 glutathione peroxidase의 단백질 발현 및 활성 그리고 환원형 glutathione 양을 증가 시켰다. 제주 지하수는 항산화 효소의 전사 인자인 erythroid transcription factor NF-E2 (Nrf2)의 인산화형 단백질 발현을 증가시켰다. 이로서 제주 지하수는 Nrf2의 활성화를 통하여 항산화 효소시스템을 증가시켰다.

Cytoprotective Effects of Docosyl Cafferate against tBHP-Induced Oxidative Stress in SH-SY5Y Human Neuroblastoma Cells

  • Choi, Yong-Jun;Kwak, Eun-Bee;Lee, Jae-Won;Lee, Yong-Suk;Cheong, Il-Young;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Myong-Jo;Kwon, Yong-Soo;Chun, Wan-Joo
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.195-200
    • /
    • 2011
  • Neuronal cell death is a common characteristic feature of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases. In the present study, docosyl cafferate (DC), a derivative of caffeic acid, was isolated from Rhus verniciflua and its protective effects on tBHP-induced neuronal cell death were examined in SH-SY5Y human neuroblastoma cells. Pretreatment of DC significantly attenuated tBHP-induced neuronal cell death in a concentration-dependent manner. DC also significantly suppressed tBHP-induced caspase-3 activation. In addition, DC restored tBHP-induced depletion of intracellular Bcl-2, an anti-apoptotic member of the Bcl-2 family. Furthermore, DC significantly suppressed tBHP-induced degradation of IKB, which retains $NF-{\kappa}B$ in the cytoplasm, resulting in the suppression of nuclear translocation of $NF-{\kappa}B$ and its subsequent activation. Taken together, the results clearly demonstrate that DC exerts its neuroprotective activity against tBHP-induced oxidative stress through the suppression of nuclear translocation of $NF-{\kappa}B$.

Antimicrobial Effect of 2-Phenylethynyl-Butyltellurium in Escherichia coli and Its Association with Oxidative Stress

  • Pinheiro, Franciane Cabral;Bortolotto, Vandreza Cardoso;Araujo, Stifani Machado;Poetini, Marcia Rosula;Sehn, Carla Pohl;Neto, Jose S.S.;Zeni, Gilson;Prigol, Marina
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권7호
    • /
    • pp.1209-1216
    • /
    • 2018
  • This study aimed to evaluate the antimicrobial activity of 2-phenylethynyl-butyltellurium (PEBT) in Escherichia coli and the relation to its pro-oxidant effect. For this, we carried out the disk diffusion test, minimum inhibitory concentration (MIC) assay, and survival curve analysis. We also measured the level of extracellular reactive oxygen species (ROS), activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and level of non-protein thiols (NPSH). PEBT at 1.28 and 0.128 mg/disk exhibited antimicrobial capability in the disk diffusion test, with an MIC value of 1.92 mg/ml, whereas PEBT at 0.96, 1.92, and 3.84 mg/ml inhibited bacterial growth after a 9-h exposure. PEBT at 3.84, 1.92, and 0.96 mg/ml increased extracellular ROS production, decreased the intracellular NPSH level, and reduced the SOD and CAT activities. Glutathione or ascorbic acid in the medium protected the bacterial cells from the antimicrobial effect of PEBT. In conclusion, PEBT exhibited antimicrobial activity against E. coli, involving the generation of ROS, oxidation of NPSH, and reduction of the antioxidant defenses in the bacterial cells.

KR 31378, a Potent Antioxidant, Inhibits Apoptotic Death of A7r5 Cells

  • Kim, Ki-Young;Kim, Byeong-Gee;Kim, Sun-Ok;Yoo, Sung-Eun;Hong, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권5호
    • /
    • pp.381-388
    • /
    • 2001
  • This work describes the pharmacological inhibition by KR 31378 and its acetyl metabolite, KR 31612, of the apoptotic cell death induced by $H_2O_2$ in the A7r5 cells. Exposure of A7r5 cells to $H_2O_2$ (0.5 mM) induced a concentration-dependent cytotoxicity in association with oligonucleosomal DNA fragmentation. $H_2O_2-induced$ cell death was potently suppressed by KR 31378, KR 31612, ${\alpha}-tocopherol$ or trolox. Additionally, the apoptotic death of A7r5 cells (DNA ladders on electrophoresis) was also strongly suppressed by KR 31378 and KR 31612, but to a less degree by ${\alpha}-tocopherol$ and trolox. As a mechanistic study, incubation with $H_2O_2$ markedly showed a decreased Bcl-2 level and, in contrast, increased Bax protein and cytochrome C release, which were significantly and concentration-dependently reversed by KR 31378 and KR 31612 as well as by ${\alpha}-tocopherol$ and trolox. KR 31378 and ${\alpha}-tocopherol$ significantly reduced lipid peroxidation in accordance with reduced intracellular ROS and peroxyl radical. These results suggest that KR 31378 has a therapeutic potential against the apoptotic injury via mediation of anti- oxidative stress.

  • PDF

Proteomic Changes in Chick Brain Proteome Post Treatment with Lathyrus Sativus Neurotoxin, β-N-Oxalyl-L-α,β-Diaminopropionic Acid (L-ODAP): A Better Insight to Transient Neurolathyrism

  • Anil Kumar, D;Natarajan, Sumathi;Omar, Nabil A M Bin;Singh, Preeti;Bhimani, Rohan;Singh, Surya Satyanarayana
    • Toxicological Research
    • /
    • 제34권3호
    • /
    • pp.267-279
    • /
    • 2018
  • Neurolathyrism is a neurodegenerative disorder characterized by spastic paraplegia resulting from the excessive consumption of Lathyrus sativus (Grass pea). ${\beta}$-N-Oxalyl-L-${\alpha},{\beta}$-diaminopropionic acid (L-ODAP) is the primary neurotoxic component in this pea. The present study attempted to evaluate the proteome-wide alterations in chick brain 2 hr and 4 hr post L-ODAP treatment. Proteomic analysis of chick brain homogenates revealed several proteins involved in cytoskeletal structure, signaling, cellular metabolism, free radical scavenging, oxidative stress and neurodegenerative disorders were initially up-regulated at 2 hr and later recovered to normal levels by 4 hr. Since L-ODAP mediated neurotoxicity is mainly by excitotoxicity and oxidative stress related dysfunctions, this study further evaluated the role of L-ODAP in apoptosis in vitro using human neuroblastoma cell line, IMR-32. The in vitro studies carried out at $200{\mu}M$ L-ODAP for 4 hr indicate minimal intracellular ROS generation and alteration of mitochondrial membrane potential though not leading to apoptotic cell death. L-ODAP at low concentrations can be explored as a stimulator of various reactive oxygen species (ROS) mediated cell signaling pathways not detrimental to cells. Insights from our study may provide a platform to explore the beneficial side of L-ODAP at lower concentrations. This study is of significance especially in view of the Government of India lifting the ban on cultivation of low toxin Lathyrus varieties and consumption of this lentil.

오자환(五子丸)의 Peroxynitrite 제거 작용 (Peroxynitrite Scavenging Mechanism of Ojawhan)

  • 김형준;정지천
    • 대한한방내과학회지
    • /
    • 제26권1호
    • /
    • pp.107-118
    • /
    • 2005
  • Objectives : Peroxynitrite $(ONOO^-)$, fonned from the reaction of $O_2^-$ and NO, is a cytotoxic species that can oxidize several cellular components such as proteins, lipids and DNA. It has been implicated in the aging process and age-related disease such as Alzheimer's disease, rheumatoid arthritis, cancer and atherosclerosis. Due to the lack of endogenous enzymes to thwart $ONOO^-$ activation, developing a specific $ONOO^-$ scavenger is remarkably important. The aim of this study was to investigate scavenging activities of $ONOO^-$ and its precursors, NO and $O_2^-$ and its scavenging mechanism of Ojawhan. Methods : To investigate scavenging activities of $ONOO^-$, NO, $O_2^-$ and its scavenging mechanism using fluorescent probes, DCFDA, DAF-2 and DHR 123. The $ONOO^-$ scavenging activity on Ojawhan was assayed by measuring oxidized dihydrorhodamine 123 (DHR 123) by fluorometry. Oxidative stress was induced by strong oxidants t-butyl hydroperoxide (t-BHP). Endothelial cell (YPEN-1) was used for detection of intracellular oxidative stress. Results : Ojawhan markedly scavenged authentic $ONOO^-$, $O_2^-$ and NO. It also inhibited $ONOO^-$ induced by $O_2^-$ and NO which are derived from SIN-1. Furthennore, ${\underline{Ojawhan}}$ blocked lipopolysaccharide (LPS)-induced $ONOO^-$, $O_2^-$ and NO generation utilizing kidney homogenates of LPS-injected mouse and inhibited t-BHP-induced ROS and $ONOO^-$ in endothelial cell culture system. Conclusions : These results suggest that Ojawhan be developed as an effective $ONOO^-$ scavenger for the prevention of $ONOO^-$ involved diseases and age-related diseases.

  • PDF

Antioxidant Effects of Scutellaria baicalensis Georgi Against Hydrogen Peroxide-induced DNA Damage and Apoptosis in HaCaT Human Skin Keratinocytes

  • Lee, Seung Young;Jin, Hyun Mi;Ryu, Byung-Gon;Jung, Ji Young;Kang, Hye Kyeong;Choi, Hee Won;Choi, Kyung Min;Jeong, Jin Woo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.68-68
    • /
    • 2018
  • In this study, we investigated whether S. baicalensis rhizome ethanol extract (SBRE) has antioxidant capacities against oxidative stress induced cellular damage in the HaCaT keratinocytes. Our results revealed that treatment with SBRE prior to hydrogen peroxide ($H_2O_2$) exposure significantly increased the HaCaT cell viability. SBRE also effectively attenuated $H_2O_2$ induced comet tail formation, and inhibited the $H_2O_2$ induced phosphorylation levels of the histone ${\gamma}H2AX$, as well as the number of apoptotic bodies and Annexin V positive cells. In addition, SBRE exhibited scavenging activity against intracellular ROS generation and restored the mitochondria membrane potential loss induced by $H_2O_2$. Moreover, $H_2O_2$ enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)-polymerase as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with SBRE. Furthermore, SBRE increased the levels of HO-1 associated with the induction of Nrf2. Therefore, we believed that SBRE may potentially serve as an agent for the treatment and prevention of neurodegenerative diseases caused by oxidative stress.

  • PDF

MITOCHONDRIAL DNA DELETION AND IMPAIRMENT OF MITOCHONDRIAL BIOGENESIS ARE MEDIATED BY REACTIVE OXYGEN SPECIES IN IONIZING RADIATION-INDUCED PREMATURE SENESCENCE

  • Eom, Hyeon-Soo;Jung, U-Hee;Jo, Sung-Kee;Kim, Young-Sang
    • Journal of Radiation Protection and Research
    • /
    • 제36권3호
    • /
    • pp.119-126
    • /
    • 2011
  • Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and $H_2O_2$-treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and $H_2O_2$-treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-${\beta}$-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.