• Title/Summary/Keyword: intracellular inulinase

Search Result 3, Processing Time 0.02 seconds

Purification and Characterization of an Intracellular Inulinase from Bacillus sphaericus 188-1

  • Kim, Jae-Ho;Kwak, Yoon-Jin;Lee, Jong-Tae;Park, Shin-Yang;Lee, Jong-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.4
    • /
    • pp.421-426
    • /
    • 2002
  • In order to obtain basal data for industrial application of inulinase from Bacillus sphaeicus 188-1, its intracellular inulinase was purified by ammonium sulfate fractionation and column chromatography on DEAE-Sephadex A-50 and Sephadex G-100. The enzyme was homogeneous as judged by SDS-polyacrylamide gel electrophoresis, with an apparent molecular weight of 29 kDa. Inulinase activity was optimal at pH 6.5 and 4$0^{\circ}C$. The enzyme activity was significantly inhibited by Cu$^{2+}$, Cd$^{2+}$ and Hg$^{2+}$. The inulinase exhibited an apparent Km value of 0.014% for inulin.

Accumulation of Selenium and Changes in the Activity of Inulinase and Catalase in the Cells of Kluyveromyces marxianus on Pulsed Electric Field Treatment

  • Pankiewicz, Urszula;Jamroz, Jerzy
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1101-1106
    • /
    • 2010
  • Pulsed electric field (PEF) of 1Hz, 1.5 kV, and 1ms increased the activities of catalase and inulinase over the whole range of applied Se concentrations compared with the non-treated cultures. A significant effect of selenium concentration (in the range of 5-14 ${\mu}g/ml$) on both intra- and extracellular enzyme activities was noted. At a Se concentration of 10 ${\mu}g/ml$, the activities of intra- and extracellular inulinases and extracellular catalase in the PEF-treated cultures reached the maximum of 71 U/g d.m., 46 U/g d.m., and approx. 8 U/ml, respectively. The maximum activity of intracellular catalase of approx. 6 U/ml (with and without PEF) was recorded at 5 ${\mu}g$ Se/ml. Further increasing of selenium concentration caused a decrease in the activity of the enzymes.

Enhancement of L-Lactic Acid Production in Lactobacillus casei from Jerusalem Artichoke Tubers by Kinetic Optimization and Citrate Metabolism

  • Ge, Xiang-Yang;Qian, He;Zhang, Wei-Guo
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2010
  • Efficient L-lactic acid production from Jerusalem artichoke tubers, by Lactobacillus casei G-02, using simultaneous saccharification and fermentation (SSF) in a fed-batch culture, is demonstrated. A kinetic analysis of the SSF revealed that the inulinase activity was subjected to product inhibition, whereas the fermentation activity of G-02 was subjected to substrate inhibition. It was also found that the intracellular NADH oxidase (NOX) activity was enhanced by the citrate metabolism, which dramatically increased the carbon flux of the Embden-Meyerhof-Parnas (EMP) pathway, along with the production of ATP. As a result, when the SSF was carried out at $40^{\circ}C$ after an initial hydrolysis of 1 h and included a sodium citrate supplement of 10 g/l, an L-lactic acid concentration of 141.5 g/l was obtained after 30 h, with a volumetric productivity of 4.7 g/l/h. The conversion efficiency and product yield were 93.6% of the theoretical lactic acid yield and 52.4 g lactic acid/l00 g Jerusalem artichoke flour, respectively. Such a high concentration of lactic acid with a high productivity from Jerusalem artichokes has not been reported previously, making G-02 a potential candidate for the economic production of L-lactic acid from Jerusalem artichokes on a commercial scale.