• Title/Summary/Keyword: intracellular enzyme

Search Result 321, Processing Time 0.023 seconds

Purification and Characterization of Soybean Cotyledonary Spermidine Dehydrogenase

  • Park, Sung-Joon;Cho, Young-Dong
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.408-413
    • /
    • 1995
  • Decrease in the amount of cotyledonary spermidine in Glycine max under anaerobic conditions related to an increase in spermidine dehydrogenase. Under the same conditions, no enzymatic activity of diamine oxidase was observed. Exposure of Glycine max both to spermidine and 1,3-diaminopropane under anaerobic conditions resulted in a decrease in spermidine contents. Correlated with the decrease in spermidine contents, there was a drastic increase in spermidine dehydrogenase. The molecular weight of the purified enzyme estimated by Sephacryl S-300 gel column and SDS gel electrophoresis were 130,000 dalton and 65,000 dalton, respectively, indicating that the enzyme is a dimer. The optimal pH for activity was 9.3. The $K_m$ value for spermidine was 0.61 mM. Neither metal ions nor polyamine and derivatives affected enzymatic activity, but the enzyme was inhibited by DTNB, NEM and PCMB, suggesting that a cysteine residue of the enzyme is associated with or involved in enzyme activity. To our knowledge, this is the first report describing properties of the enzyme from plants. Considered together, the data in this paper indicate that both spermidine and 1,3-diaminopropane, novel activators, enhance the spermidine dehydrogenase activity and control the intracellular spermidine contents.

  • PDF

Partial Purification and Characterization of Purine Nucleoside Phosphorylase in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 PNP의 부분 정제와 특성)

  • 최혜선
    • Korean Journal of Microbiology
    • /
    • v.29 no.3
    • /
    • pp.172-178
    • /
    • 1991
  • Intracellular purine nucleoside phosphorylase (PNP) from Saccharomyces cerevisiae was partially purified using ammonium sulfate fractionation, heat treatment, a DEAE-Sephadex A-50 anion exchange chromatography and a Sephadex G-100 gel filtration chromatography. The enzyme was purified 20 fold with 3% recovery. The stability of enzyme was kept by addition of inosine and dithiothreitol. The pH optimum was found to be from 6.3 to 7.3 PNP was sensitive to 10mM of $Hg^{2+}$ , $Cu^{2+}$ , and was inactivated completely by 2 mM of p-chloromercuribenzoate and 5,5'-dithiobis (2-nitrobenzoate). The enzyme was capable of catalyzing the phosphorolysis of inosine, deoxyinosine, guanosine, deoxyguanosine and adenosine.

  • PDF

Effect of glutathione on tetraploid embryo development in the pigs

  • Kim, Hwa-Young;Lee, Sang-Hee;Hwangbo, Yong;Lee, Seung Tae;Lee, Eunsong;Park, Choon-Keun
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.207-213
    • /
    • 2016
  • The objective of this study was to investigate to influence of glutathione (GSH) on development and antioxidant enzyme activity in tetraploid porcine embryos. Tetraploid embryos were produced using parthenogenetic 2-cell embryo by electrofusion method. Tetraploid embryo development was observed every 24 hours and intracellular antioxidant enzyme activity was measured at 120 hours after electrofusion. The 4-cell to 16-cell stage tetraploid embryos was increased in 100 and $500{\mu}M$ GSH-treated groups compared control group at 48 hours (P < 0.05) but cleavage rates were not significantly different among the GSH treatment groups at 48, 72, 96, and 120 hours. Blastocyst formation was significantly increased by 300 and $500{\mu}M$ GSH at 120 hours in tetraploid embryos (P < 0.05). But blastocyst cell number were not significantly different among the GSH treatment groups ($16.4{\pm}0.8$, $16.8{\pm}2.6$, $18.5{\pm}2.8$ and $17.5{\pm}1.8$). The intracellular antioxidant enzyme level was increased in $500{\mu}M$ GSH compared to 0 and $100{\mu}M$ GSH (P < 0.05). We suggest that GSH may be improve development of tetraploid embryo in pigs.

Studies on the $\beta$-Galactosidase from Thermophilic Bacterium - On the Production, Purification of Enzyme and the Properties of the Purified Enzyme - (고온성세균의 $\beta$-Galactosidase에 관한 연구( II )-효소의 생산, 정제 및 정제효소의 성질-)

  • 오만진;이종수;김해중;김찬조
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 1983
  • This experiment was carried out to optimize the condition for the enzyme production by selected strain in the basal medium, to purify the enzyme and to characterize the purified enzyme. The results obtained were as follows. 1. The optimal conditions for the $\beta$-galactosidase production were initial pH 7.0 and temperature $65^{\circ}C$. 2. Enzyme was induced by the addition of lactose and galactose, and it was intracellular enzyme. 3. The purified enzyme was obtained with the increased level of activity approximately 28.5 folds as compared with crude enzyme and the yield of 15.2% by means of DEAE-Cellulose column chromatography, Sephadex G-150 gel filtration 4. $\beta$-galactosidase from final step of purification showed a sing1e protein band on polyacrylamide gel disc electrophoresis. 5. The optimal temperature and pH of the purified enzyme were $65^{\circ}C$, pH 6.5 for the hydrolysis of lactose.

  • PDF

Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells

  • Yoon, Mi Na;Kim, Dong Kwan;Kim, Se Hoon;Park, Hyung Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.233-239
    • /
    • 2017
  • Intracellular calcium ($Ca^{2+}$) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide ($H_2O_2$) on intracellular $Ca^{2+}$ accumulation in mouse pancreatic acinar cells. Perfusion of $H_2O_2$ at $300{\mu}M$ resulted in additional elevation of intracellular $Ca^{2+}$ levels and termination of oscillatory $Ca^{2+}$ signals induced by carbamylcholine (CCh) in the presence of normal extracellular $Ca^{2+}$. Antioxidants, catalase or DTT, completely prevented $H_2O_2$-induced additional $Ca^{2+}$ increase and termination of $Ca^{2+}$ oscillation. In $Ca^{2+}$-free medium, $H_2O_2$ still enhanced CCh-induced intracellular $Ca^{2+}$ levels and thapsigargin (TG) mimicked $H_2O_2$-induced cytosolic $Ca^{2+}$ increase. Furthermore, $H_2O_2$-induced elevation of intracellular $Ca^{2+}$ levels was abolished under sarco/endoplasmic reticulum $Ca^{2+}$ ATPase-inactivated condition by TG pretreatment with CCh. $H_2O_2$ at $300{\mu}M$ failed to affect store-operated $Ca^{2+}$ entry or $Ca^{2+}$ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial $Ca^{2+}$ uniporter blocker, failed to attenuate $H_2O_2$-induced intracellular $Ca^{2+}$ elevation. These results provide evidence that excessive generation of $H_2O_2$ in pathological conditions could accumulate intracellular $Ca^{2+}$ by attenuating refilling of internal $Ca^{2+}$ stores rather than by inhibiting $Ca^{2+}$ extrusion to extracellular fluid or enhancing $Ca^{2+}$ mobilization from extracellular medium in mouse pancreatic acinar cells.

Studies on the Intracellular Localization of Polyamines and Their related Enzymes in Spinach Leaves (Polyamine과 Polyamine의 생합성에 관련된 효소들의 시금치잎 세포내 분포에 관한 연구)

  • 김성호
    • Journal of Plant Biology
    • /
    • v.32 no.4
    • /
    • pp.285-292
    • /
    • 1989
  • The intracellular localizations of polyamines and their related enzymes were investigated from young spinach leaves. Polyamines were present in all parts of plant cells, both in the subcellular organelles and in the soluble fraction of cytoplasm, however, polyamines were mainly located in the cytosolic fraction. Most activities of L-arginine decarboxylase(ADC) and L-ornithine decarboxylase(ODC), two important enzymes of putrescine and polyamine biosynthesis, were detected in cytosol fraction, while in subcellular organelles the activities were very low. Activities of diamine oxidase(DAO) and polyamine oxidase(PAO), the catabolic enzyme of diamine and polyamine, were not detected in spinach leaves. It was suggested that polyamines and their related synthetic enzymes were located in the soluble fraction of cytoplasm.

  • PDF

Induction of Quinone Reductase , an Anticarcinogenic Marker Enzyme, by Vitamin E in Both Hepalclc7 Cells and Mice

  • Kwon, Chong-Suk;Kim, Jong-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.122-124
    • /
    • 1999
  • Induction of NAD(P)H : (quinone-acceptor) oxidoreductase (QR) which obligatory two electron reduction of quinones and prevents their participation in oxidative cycling and thereby the depletion of intracellular glutathione, has been used as a marker for chemopreventive agents. We postulated that vitamin E, an antioxidant, which induces QR as the gene of QR was reported to contain antioxidant reponsive element in the 5'-flanking region. Vitamin E resulted in significant induction of QR in both hepalclc7 cells and mouse tissues. QR induction was observed; to be maximal at 25uM vitamin E for hepalclc7 cells while it was maximal in the level of 2.5∼5 μmoles vitamin E/㎏ BW for mouse tissues. Thus the cancer-preventive effect of vitamin E may be exerted by it induction of intracellular detoxifying enzymes.

  • PDF

Partial Purification and Properties of Non-specific $\beta$ -fructofuranosidase Produced by Bacillus subtilis (Bacillus subtilis가 생산하는 비특이적 $\beta$-fructofuransoidase의 부분정제 및 특성)

  • 송근섭;엄태붕
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.5
    • /
    • pp.484-489
    • /
    • 1990
  • An intracellular inulase ( fJ-fructofuranoside fructohydrolase, EC 3.2.1.26) from Bacillus subtilis has been partially purified and its mode of action and general properties were studied. The enzyme had an apparent molecular weight of 49,000 as estimated by gel filtration and its pI point was 5.2. Substrate concentration studies showed an apparent Km of 10 mM for sucrose and of 18 mM for raffinose. The enzyme was an acid-labile protein with a pH optimum of 6.6. The optimum temperature was 50$^{\circ}$C. The enzyme acts on straight chain oligo- and poly-fructosides of the inulin series via a exo-wise cleavage mechanism, as well as on sucrose.

  • PDF

Optimum Culture Conditions for the Production of Fructosyl transferase by Aureobasidium pullulans C-23 (Aureobasidium pullulans C-23 균주에 의한 Fructosyl Transferase의 생산 최적 배양조건)

  • 조원태;임재윤
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.417-422
    • /
    • 1990
  • For optimal production of fructosyl transferase in AureobasidiumpuZZulane C-23, the effect of fermentation conditions for cell growth and fructosyl transferase production were investigated. Sucrose was excellent carbon source. Sucrose concentration for the optimum production of fructosyl transferase was 35%. Enzyme productivity was significantly increased by addition of ammonium oxalate and yeast extract. A time course study for the enzyme production by Aureobasidium pullutans C-23 was carried out. At 2 days incubation, the production of intracellular enzyme was maximum. The extracellular enzyme production was found to be increased up to 6 days.

  • PDF

Purification and Characterization of Manganese Superoxide Dismutase from Staphylococcus sciuri

  • Song, Chi-Hyun;Park, Eun-Kyung;Suh, Hyung-Joo;Lee, Yong-Se;Choi, Jang-Won;Ra, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.271-275
    • /
    • 1999
  • The intracellular superoxide dismutase (SOD) from Staphylococcus sciuri was isolated to homogeneity by continuous steps, including ammonium sulfate fractionation, DEAE-ion-exchange chromatography, gel filtration, and phenyl hydrophobic gel chromatography. Pure SOD had a specific activity of 4,625 U/mg and was purified 158-fold with a yield of 31 % from a cell free extract. The molecular weight of the purified SOD was determined to be approximately 35.5 kDa by gel filtration and the enzyme was also shown to be composed of dimeric subunits on denaturing SDS-PAGE. The enzyme activity remained stable at pH 5 to 11 and also to heat treatment of up to $50^{\circ}C$ at pH 7.8, with 80% relative activity. The enzyme was insensitive to cyanide, hydrogen peroxide, and azide, indicating that it is a manganese-containing SOD. The EPR spectrum showed the enzyme containing manganese as a cofactor.

  • PDF