Purification and Characterization of Soybean Cotyledonary Spermidine Dehydrogenase

  • Park, Sung-Joon (Department of Biochemistry, College of Science and Bioproducts Research Center, Yonsei University) ;
  • Cho, Young-Dong (Department of Biochemistry, College of Science and Bioproducts Research Center, Yonsei University)
  • Received : 1995.05.03
  • Published : 1995.09.30

Abstract

Decrease in the amount of cotyledonary spermidine in Glycine max under anaerobic conditions related to an increase in spermidine dehydrogenase. Under the same conditions, no enzymatic activity of diamine oxidase was observed. Exposure of Glycine max both to spermidine and 1,3-diaminopropane under anaerobic conditions resulted in a decrease in spermidine contents. Correlated with the decrease in spermidine contents, there was a drastic increase in spermidine dehydrogenase. The molecular weight of the purified enzyme estimated by Sephacryl S-300 gel column and SDS gel electrophoresis were 130,000 dalton and 65,000 dalton, respectively, indicating that the enzyme is a dimer. The optimal pH for activity was 9.3. The $K_m$ value for spermidine was 0.61 mM. Neither metal ions nor polyamine and derivatives affected enzymatic activity, but the enzyme was inhibited by DTNB, NEM and PCMB, suggesting that a cysteine residue of the enzyme is associated with or involved in enzyme activity. To our knowledge, this is the first report describing properties of the enzyme from plants. Considered together, the data in this paper indicate that both spermidine and 1,3-diaminopropane, novel activators, enhance the spermidine dehydrogenase activity and control the intracellular spermidine contents.

Keywords

References

  1. Plant Physiol. v.101 Andrews, D.L.;Cobb, B.G.;Johnson, J.R.;Drew, M.C. https://doi.org/10.1104/pp.101.2.407
  2. Plant Physiol. v.89 Benzamin, R.G.;Gregory, C.P.;Glenn, D.K. https://doi.org/10.1104/pp.89.2.525
  3. Biochim. Biophys. Acta. v.1201 Choi, Y.S.;Cho, Y.D. https://doi.org/10.1016/0304-4165(94)90078-7
  4. Plant Physiol. v.69 Flores, H.E.;Galston, A.W. https://doi.org/10.1104/pp.69.3.701
  5. Plant Physiol. v.97 Gamamik, A.;Frydman, R.B. https://doi.org/10.1104/pp.97.2.778
  6. Plant Physiol. v.88 Hirasawa, E. https://doi.org/10.1104/pp.88.2.441
  7. J. Ferment. Bioeng. v.70 Hisano, T.;Abe, S.;Kimura, A.;Murata, K. https://doi.org/10.1016/0922-338X(90)90065-5
  8. J. Ferment. Bioeng. v.69 Hisano, T.;Abe, S.;Kimura, A.;Murata, K. https://doi.org/10.1016/0922-338X(90)90239-S
  9. Plant Physiol. v.93 Kang, J.H.;Cho, Y.D. https://doi.org/10.1104/pp.93.3.1230
  10. J. Protozool. v.34 Kim, B.G.;Sobota, A.;Bitonti, A.J.;Mccann, P.P.;Byers, T.J. https://doi.org/10.1111/j.1550-7408.1987.tb03175.x
  11. Nature v.227 Laemmli, U.K. https://doi.org/10.1038/227680a0
  12. Korean Biochem. J. v.26 Lee, J.E.;Cho, Y.D.
  13. J. Biol. Chem. v.193 Lowry, O.M.;Rosenburogh, N.J.;Foor, A.L.;Randal, R.J.
  14. Plant Science v.79 Maccarrone, M.;Rossi, A.;Avigliano, L.;Agro, A.F. https://doi.org/10.1016/0168-9452(91)90068-J
  15. Korean Biochem. J. v.25 Park, Y.C.;Cho, Y.D.
  16. Plant Cell Physiol. v.29 Reggiani, R.;Cantu, C.A.;Brambilla, I.;Bertani, A.
  17. Plant Physiol. v.92 Russel, D.A.;Wong, D.M.;Sachs, M.M. https://doi.org/10.1104/pp.92.2.401
  18. J. Biol. Chem. v.245 Tabor, C.W.;Kellogg, P.D.
  19. Biochem. Biophys. Res. Comm. v.181 Yang, Y.G.;CHo, Y.D. https://doi.org/10.1016/0006-291X(91)92063-P