• Title/Summary/Keyword: intracellular enzyme

Search Result 323, Processing Time 0.032 seconds

Esterase Production and Culture Characteristics of Bacteria Isolated from Acid Hydrolysed Soybean Protein (산분해 대두 단백질로부터 분리된 Esterase 생성균의 생육 및 효소생성 특성)

  • Oh, Nam-Soon
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.484-489
    • /
    • 1997
  • The characteristics of growth and esterase activity of bacterial strains isolated from acid hydrolysed soybean protein were examined. All the isolated strains having decomposition activity of p-hydroxybenzoic acid butyl ester and esterase producing activity were identified as Bacillus sp. by morphological and biochemical methods. The specific growth rates, esterase activities and p-hydroxybenzoic acid butyl ester decomposition activities of isolated strains were $0.844{\sim}1.213\;h^{-1}$, $21{\sim}222\;mU/ml$ and $5.4{\sim}8.1\;mU/ml$, respectively. In the fermentation of Bacillus sp. KB8 strain which had the highest esterase producing activity, growth, extracellular excretion and intracellular synthesis of esterase were inhibited by adding NaCl in the culture broth. Esterase producing activity gradually increased after late exponential growth phase, until maximum value of 420 mU/ml reached after 64 hours culture period. Esterase of Bacillus sp. KB8 strain was stable up to $50^{\circ}C$ for 30 minutes, but was inactivated by heating for 30 minutes at $70^{\circ}C$. The enzyme activity exponentially decreased during the incubation time at the temperatures of $60^{\circ}C$ and $65^{\circ}C$.

  • PDF

A study of the [$Ca^{2+}$] and the Apoptosis of the KB Cell Lines after 10Gy Irradiation (방사선조사 후 유표피암종세포내 칼슘농도의 변화와 apoptosis 발현에 관한 연구)

  • Moon Je-Woon;Lee Sam-Sun;Heo Min-Suk;Choi Soon-Chul;Park Tae-Won;You Dong-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.105-117
    • /
    • 1999
  • Purpose: Ionizing radiations have been reported as an apoptosis initiating stimulus in various cells and it has established that sustained elevations in [Ca/sup 2+/] can lead to DNA fragmentation by Ca/sup 2+/-dependent endonucleases, ultimately resulting in apoptotic cell death. The previous experiments have been reported by using primarily thymocytes and lymphocytes and the change of [Ca/sup 2+/] was measured only by minutes or hours respectively. We need to evaluate [Ca/sup 2+/] in both several minutes and hours after irradiation of radiation of radiation therapy and verify the apoptotic cells. Materials and Methods: We have measured [Ca/sup 2+/] in human gingival epitheloid cancer cell with 10Gy irradiation, at minutely intervals and hourly intervals using digitized video-intensified fluorescence microscopy and the fluorescent Ca/sup 2+/ indicator dye, fura-2. In order to find out that the transient rise in [Ca/sup 2+/] could induced apoptosis, cells were incubated for 1 hour at 37℃ with TdT enzyme, rinsed and resuspended containing fluorescence and observed under a confocal fluorescence microscope. MTT assay was done to determine cell activity and LDH assay was done to determine the amount of necrotic cells. Results: After irradiation, the transient and temporal increasing of [Ca/sup 2+/] in the KB cells was founded. Though, there was no change in the intracellular [Ca/sup 2+/] at 30 minutes and 2 hours after irradiation. We could detect of DNA fragmented cells at 4 hours after 10Gy irradiated cells. There were no significant differences between 4 hour, 1 day, 3 day cells. There were no significant differences in MTT and LDH assay between the irradiated group and the control group after 4 hours and 1 day. Though after 3 days there were differences in MTT and LDH assay between the irradiated group was significantly decreased than the control group, in LDH assay the number of necrotic cell death of the irradiated was higher than the control group. Conclusion: In KB cells there were incipient and temporal increasing of the [Ca/sup 2+/] with 10Gy irradiation and the apoptosis was founded from 4 hours later which was earlier than seeing of the change of the amount of the cellular ability and necrosis.

  • PDF

Phenotypic Suppression of Rad53 Mutation by CYC8 (CYC8에 의한 rad53 돌연변이의 표현형 억제에 대한 연구)

  • Park, Kyoung-Jun;Choi, Do-Hee;Kwon, Sung-Hun;Kim, Joon-Ho;Bae, Sung-Ho
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.122-126
    • /
    • 2010
  • RAD53 functions as an effector kinase of checkpoint pathways in Saccharomyces cerevisiae, which plays a central role to regulate many downstream cellular processes in response to DNA damage. It also involves in transcriptional activation of various genes including RNR genes which encode the key enzyme required for dNTP synthesis. In this study, we identified CYC8 as a suppressor for the hydroxyurea sensitivity of $rad53{\Delta}$ mutation. $Rad53{\Delta}$ mutant transformed with a multi-copy plasmid containing CYC8 showed increased hydroxyurea resistance. In contrast, TUP1 which forms a complex with CYC8 did not function as a suppressor. In the case of mutations, both $cyc8{\Delta}$ and $tup1{\Delta}$ suppressed hydroxyurea sensitivity of $rad53{\Delta}$. Since CYC8 can propagate as a prion in yeast, overexpression of CYC8 induced misfolding of the normal CYC8 proteins, resulting in dominant cyc8-phenotype. Therefore, it is suggested that CYC8 can act as a multi-copy suppressor due to its prion property. It was observed that the levels of RNR transcription were increased in the yeast strains containing either multi-copies of CYC8 gene or $cyc8{\Delta}$ mutation, suggesting that the increased level of RNR will elevate the intracellular pools of dNTPs, which, in turn, suppress the phenotype of $rad53{\Delta}$ mutation.

Effects of phenylephrine-induced PKC activation on Mg2+ release in guinea pig heart and isolated ventricular myocytes (기니픽 심장과 심근세포에서 Phenylephrine에 의한 PKC 활성화가 Mg2+ 유리에 미치는 영향)

  • Chang, Sung-eun;Kang, Hyung-sub;Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.29-42
    • /
    • 1998
  • $Mg^{2+}$ is one of the most abundant divalent cations in mammalian body(0.2~1.0mM) and the important physiological roles are : first, the cofactor of many enzyme activities, second, the regulator of glycolysis and DNA synthesis, third, the important role of bioenergetics by regulating of phosphorylation, fourth, the influence of cardiac metabolism and function. In this work we have investigated the regulation of the $Mg^{2+}$ induced by ${\alpha}_1-adrenoceptor$ stimulation in perfused guinea pig hearts and isolated myocytes. The $Mg^{2+}$ content of the perfusate or the supernatant was measured by atomic absorbance spectrophotometry. The elimination of $Mg^{2+}$ in the medium increased the force of contraction of right ventricular papillary muscles, and the left ventricular pressure. Phenylephrine also enhanced the force of contraction in the presence of $Mg^{2+}-free$ medium. ${\alpha}_1-Agonists$ such as phenylephrine and methoxamine were found to induce $Mg^{2+}$ efflux in both perfused hearts and myocytes. These effects were blocked by prazosin, an ${\alpha}_1-adrenoceptor$ antagonist. The $Mg^{2+}$ influx could also be induced by phenylephrine and R59022, a diacylglycerol kinase inhibitor. In the presence of protein kinase C(PKC) inhibitors, phenylephrine produced an increase in $Mg^{2+}$ efflux from perfused hearts. Furthermore, $Mg^{2+}$ efflux by phenylephrine was amplified by phorbol 12-myristate 13-acetate(PMA). This enhancement of $Mg^{2+}$ efflux by PMA was blocked by prazosin in perfused hearts. By contrast, the $Mg^{2+}$ influx could be induced by verapamil, nifedipine, ryanodine in perfused hearts, but not in myocytes. $W^7$, a $Ca^{2+}$/calmodulin antagonist, completely blocked the phenylephrine-induced $Mg^{2+}$ efflux in perfused hearts. In conclusion, $Mg^{2+}$ is responsible for the cardiac activity associated with ${\alpha}_1-adrenoceptor$ stimulation. The mobilization of $Mg^{2+}$ is decreased or increased by ${\alpha}_1-adrenoceptor$ stimulation in guinea pig hearts. These responses may be related specifically to the respective pathways of signal transduction. A decrease in $Mg^{2+}$ efflux by ${\alpha}_1-adrenoceptor$ stimulation in hearts can be through PKC dependent and intracellular $Ca^{2+}$ levels.

  • PDF

Adenoviral-Mediated Ref-1 Overexpression Potentiates NO Production in Bradykinin-Stimulated Endothelial Cells (Bradykinin으로 자극한 혈관내피세포에서 Ref-1의 세포내 과발현에 의한 NO 생성 증진 효과에 대한 연구)

  • Song, Ju-Dong;Kim, Kang-Mi;Lee, Sang-Kwon;Kim, Jong-Min;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.905-909
    • /
    • 2007
  • The dual-function protein redox factor-1 (Ref-1) is essential for base excision repair of oxidatively damaged DNA and also governs the activation of many redox-sensitive transcription factors. We examined the role of Ref-1 in regulation of nitric oxide (NO) synthesis employing adenoviral-mediatedoverexpression of Ref-1 in bradykinin-stimulated endothelial cells. Intracellular NO was detected with the NO-sensitive fluorophore DAF-2. Overexpression of Ref-1 potentiates bradykinin-stimulated NO production in endothelial cells. And, cells ifected with AdRef-1 showed higher fluorescence intensity compared with uninfected or AdD1312-infected cells. In parallel with this, over expression of Ref-1 also stimulated endothelial NO synthase (eNOS) enzyme activity, compared with unifected or AdD1312-infected cells, in bradykinin-stimulated cells as well as in unstimulated cells. These results suggest that Ref-1 implicates in endothelium-dependent vasorelaxation resulting from NO production in vascular system.

Production of $\beta$-Mannanase and $\beta$-Mannosidase from Sporolactobacillus sp. M201. (Sporolactobacillus sp. M201 균주에 의한 $\beta$-Mannanase와 $\beta$-Mannosidase의 생산)

  • 박원식;김화영;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.232-237
    • /
    • 1998
  • A bacterial strain producing high levels of an extracellular ${eta}$-mannanase and intracellular ${eta}$-mannosidase and ${alpha}$-galactosidase was isolated from soil. The strain isolated was identified as a strain of Sporolactobacillus sp. and designated as Sporolactobacillus sp. M20l. Synthesis of ${eta}$-mannanase by Sporolactobacillus sp. M20l was induced by sucrose, maltose, or locust bean gum. The highest induction rate was obtained with 2% locust bean gum added to the culture medium as a sole carbon source. On the other hand, induction of ${eta}$-mannosidase was observed only with locust bean gum. The optimal media for the enzyme production were established as follows: for ${eta}$-mannanase; 2% locust bean gum, 0.5% peptone, 0.2% KH$_2$PO$_4$, 80 mg/l MgSO$_4$, and 8 mg/l ZnSO$_4$ (pH 6.0), and for ${eta}$-mannosidase; 2% locust bean gum, 0.5% yeast extract, 0.2% KH$_2$PO$_4$, 80 mg/l MgSO$_4$, and 8 mg/l ZnSO$_4$ (pH 5.0). The optimal culture temperatures for production of ${eta}$-mannanase and ${eta}$-mannosidase were found to be 37$^{\circ}C$ and 3$0^{\circ}C$, respectively. Under the optimal culture conditions, the production of ${eta}$-mannanase and ${eta}$-mannosidase reached the highest levels of 10.6 units/ml and 1.35 units/ml after 30 h and 24 h cultivation, respectively.

  • PDF

Antioxidant Enzyme Activity and Anti-Adipogenic Effects of (-)-Epigallocatechin-3-Gallate in 3T3-L1 Cells ((-)-Epigallocatechin-3-Gallate의 3T3-L1 세포에서 항산화 효소 활성 및 지방세포 분화 억제 효과)

  • Kim, Younghwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1293-1299
    • /
    • 2017
  • Obesity contributes to the development of diseases, such as type II diabetes, hypertension, coronary heart disease, and cancer. In addition, oxidative stress caused by reactive oxygen species (ROS) is recognized widely as a contributing factor in the development of chronic diseases. This study was examined the antioxidant and anti-adipogenic activities of epigallocatechin-3-gallate (EGCG) in 3T3-L1 preadipocytes. 3T3-L1 cells were differentiated with or without EGCG for 6 days. The production of glutathione (GSH) and the activities of the antioxidant enzymes, such as glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were measured. EGCG inhibited significantly the lipid accumulation and the expression of adipogenic specific proteins including CCAAT/enhancer binding protein ${\alpha}$ and adipocyte fatty acid binding protein. The production of intracellular ROS was decreased significantly by EGCG in 3T3-L1 cells. EGCG increased the GSH production and the activities of GPx, GR, CAT, and SOD. Moreover, EGCG increased the protein expression of glutamate-cysteine ligase and heme oxygenase-1 in 3T3-L1 cells. These results suggest that EGCG increased the activity and expression of antioxidant enzymes and suppressed the lipid accumulation in 3T3-L1 cells. Therefore, the use of phytochemicals that can maintain the GSH redox balance in adipose tissue could be promising for reducing obesity.

Developmental Roles of D-bifunctional Protein-A Zebrafish Model of Peroxisome Dysfunction

  • Kim, Yong-Il;Bhandari, Sushil;Lee, Joon No;Yoo, Kyeong-Won;Kim, Se-Jin;Oh, Gi-Su;Kim, Hyung-Jin;Cho, Meyoung;Kwak, Jong-Young;So, Hong-Seob;Park, Raekil;Choe, Seong-Kyu
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.74-80
    • /
    • 2014
  • The peroxisome is an intracellular organelle that responds dynamically to environmental changes. Various model organisms have been used to study the roles of peroxisomal proteins in maintaining cellular homeostasis. By taking advantage of the zebrafish model whose early stage of embryogenesis is dependent on yolk components, we examined the developmental roles of the D-bifunctional protein (Dbp), an essential enzyme in the peroxisomal ${\beta}$-oxidation. The knockdown of dbp in zebrafish phenocopied clinical manifestations of its deficiency in human, including defective craniofacial morphogenesis, growth retardation, and abnormal neuronal development. Overexpression of murine Dbp rescued the morphological phenotypes induced by dbp knockdown, indicative of conserved roles of Dbp during zebrafish and mammalian development. Knockdown of dbp impaired normal development of blood, blood vessels, and most strikingly, endoderm-derived organs including the liver and pancreas - a phenotype not reported elsewhere in connection with peroxisome dysfunction. Taken together, our results demonstrate for the first time that zebrafish might be a useful model animal to study the role of peroxisomes during vertebrate development.

The enhancing effect of Acanthopanax sessiliflorus fruit extract on the antibacterial activity of porcine alveolar 3D4/31 macrophages via nuclear factor kappa B1 and lipid metabolism regulation

  • Hwang, Eunmi;Kim, Gye Won;Song, Ki Duk;Lee, Hak-Kyo;Kim, Sung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1776-1788
    • /
    • 2019
  • Objective: The demands for measures to improve disease resistance and productivity of livestock are increasing, as most countries prohibit the addition of antibiotics to feed. This study therefore aimed to uncover functional feed additives to help enhance livestock immunity and disease resistance, using Acanthopanax sessiliflorus fruit extract (ASF). Methods: ASF was extracted with 70% EtOH, and total polyphenolic and catechin contents were measured by the Folin-Ciocalteu and vanillin assay, respectively. The 3D4/31 porcine macrophage cells ($M{\Phi}$) were activated by phorbol 12-myristate 13-acetate (PMA), and cell survival and growth rate were measured with or without ASF treatment. Flow-cytometric analysis determined the lysosomal activity, reactive oxygen species levels (ROS), and cell cycle distribution. Nuclear factor kappa B ($NF-{\kappa}B$) and superoxide dismutase (SOD) protein expression levels were quantified by western blotting and densitometry analysis. Quantitative polymerase chain reaction was applied to measure the lipid metabolism-related genes expression level. Lastly, the antibacterial activity of 3D4/31 $M{\Phi}$ cells was evaluated by the colony forming unit assay. Results: ASF upregulated the cell viability and growth rate of 3D4/31 $M{\Phi}$, with or without PMA activation. Moreover, lysosomal activity and intracellular ROS levels were increased after ASF exposure. In addition, the antioxidant enzyme SOD2 expression levels were proportionately increased with ROS levels. Both ASF and PMA treatment resulted in upregulation of $NF-{\kappa}B$ protein, tumor necrosis factor $(TNF){\alpha}$ mRNA expression levels, lipid synthesis, and fatty acid oxidation metabolism. Interestingly, co-treatment of ASF with PMA resulted in recovery of $NF-{\kappa}B$, $TNF{\alpha}$, and lipid metabolism levels. Finally, ASF pretreatment enhanced the in vitro bactericidal activity of 3D4/31 $M{\Phi}$ against Escherichia coli. Conclusion: This study provides a novel insight into the regulation of $NF-{\kappa}B$ activity and lipid metabolism in $M{\Phi}$, and we anticipate that ASF has the potential to be effective as a feed additive to enhance livestock immunity.

Inhibitory Effects of Novel Hexapeptide on Melanogenesis by Regulating MITF in B16F10 Melanoma Cells (B16F10 멜라닌 세포에서 신규 헥사펩타이드의 MITF 조절을 통한 멜라닌 생성 저해 효과)

  • Lee, Eung Ji;Kim, Jandi;Jeong, Min Kyeong;Lee, Young Min;Chung, Yong Ji;Kim, Eun Mi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.11-22
    • /
    • 2020
  • In this study, we investigated anti-pigmentation effect of a hexapeptide. The peptide significantly reduced melanin contents and inhibited tyrosinase activity in a dose-dependent manner, in which tyrosinase is a key enzyme in melanogenesis. The peptide also significantly reduced the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1) and their upstream transcription factor, microphthalmia-associated transcription factor (MITF). Furthermore, the peptide suppressed the phosphorylation level of cAMP-response element binding protein (CREB), a transcription factor of MITF, and increased the phosphorylation level of extracellular signal-regulated kinase (ERK), a kinase mediates MITF phosphorylation and proteasomal degradation. The peptide significantly inhibited the expression of Rab27A, Melanophilin, and MyosinVa, the components of motor complex involved in intracellular movement of melanosome. These results suggest that Hexapeptide could be used as an effective whitening agent that has inhibitory effect on melanin production and melanosome transport by regulating expression and degradation of MITF in melanocytes.