• Title/Summary/Keyword: intracellular enzyme

Search Result 326, Processing Time 0.025 seconds

Effects of Oral Administration of Phellinus linteus on the Productions of the Th1- and Th2-type Cytokines in Mice

  • Oh, Gi-Su;Pae, Hyun-Ock;Choi, Byung-Min;Kwon, Ji-Wung;Yun, Yeong-Ho;Choi, Jeong-Ho;Kwon, Tae-Oh;Park, Young-Chul;Chung, Hun-Teag
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.182-187
    • /
    • 2003
  • Background: The mushroom Phellinus linteus (PL) has been shown to have the anti-tumor and immunostimulatory effects. We hypothesized that the hot water extract of PL (WEPL) exerts its significant immunostimulatory effect by inducing production of the Th1-derived cytokine interferon-${\gamma}$ (IFN-${\gamma}$) by T lymphocytes. Methods: T lymphocytes were isolated from the mice fed with 200 mg/kg of WEPL once a day for 4 weeks, and then stimulated with the mitogen concanavaline A (Con A). IFN-${\gamma}$ gene and intracellular protein expressions were analyzed by RT-PCR and flow cytometry, respectively. The production of IFN-${\gamma}$ was measured by enzyme-linked immunosorbent assay. Results: WEPL significantly enhanced the transcription of IFN-${\gamma}$ mRNA. The effect of WEPL on IFN-${\gamma}$ expression was further supported by a concomitant increase in the number of cells with intracellular IFN-${\gamma}$ protein as well as the secretion of IFN-${\gamma}$. However, WEPL did not modulate either gene expression or protein secretion of interleukin-4, a Th2-associated cytokine, by Con A-stimulated T lymphocytes. Conclusion: Our results demonstrate that one of the potentially beneficial anti-tumor and immunostimulatory effects of WEPL may be mediated through the enhancement of IFN-${\gamma}$ secretion by T lymphocytes.

Hexane Extract of Kaempferia galanga L. Suppresses Melanogenesis via p38, JNK and Akt

  • In, Myung-Hee;Jeon, Byoung Kook;Mun, Yeun-Ja;Woo, Won-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.47-53
    • /
    • 2016
  • Kaempferia galanga L. is one of the plants in Zingiberaceae family. It is used by people in many regions of Asia and Africa for relieving toothache, abdominal pain, muscular swelling and rheumatism. Tyrosinase is a key enzyme for melanogenesis, and hyperpigmentation is associated with abnomal accumulation of melanin pigment. This study aimed to investigate the inhibition of melanogenesis by hexane extract of Kaempferia galanga L. (HKG) in B16F10 melanoma cells. Cell-free tyrosinase, melanin contents, intracellular tyrosinase activity and western blot analysis were performed to elucidate the effects on anti-melanogenesis. Cytotoxicity of the extracts was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and determined the concentration of 12.5, 25 μg/ml. HKG significantly inhibited to activities of intracellular tyrosinase and melanin synthesis in the absence or presence of α-melanocyte stimulating hormone (α-MSH) with dose-dependent manner. And HKG inhibited the expression of tyrosinase, tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2 (TRP-2), regardless of the presence or absence of α-MSH. HKG also down-regulated phosphorylation of p38 and JNK, and up-regulated phosphorylation of Akt. These effects were not related to its cytotoxicity action. These results indicate that HKG has the potential to be a useful therapeutic agent for treating hyperpigmentation disorders and as a beneficial additive in whitening agents in cosmetics industry.

Anti-thrombotic activity of fermented rice bran extract with several oriental plants in vitro and in vivo (쌀겨발효추출물의 항혈전효과)

  • Jeon, Bo-Ra;Ji, Hyun Dong;Kim, Su Jung;Lee, Chun-Hee;Kim, Tae-Wan;Rhee, Man-Hee
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.4
    • /
    • pp.233-240
    • /
    • 2015
  • Although the effects of the rice bran have recently been investigated, there is no information regarding platelet physiology available. However, it is well known that fermented natural plants have a beneficial effect on cardiovascular diseases. Therefore, this study was conducted to investigate whether fermented rice bran extract (FRBE) with several plants (Artemisia princeps, Angelica Gigantis Radix, Cnidium officinale, and Camellia sinensis) affected agonist-induced platelet aggregation, and if so, what the underlying mechanism of its activity was. We performed several experiments, including in vitro platelet aggregation, intracellular calcium concentration and adenosine triphosphate release. In addition, the activation of integrin ${\alpha}_{II}b{\beta}3$ was determined using fibrinogen binding. Thrombus formation was also evaluated in vivo using an arterio-venous shunt model. The FRBE inhibited collagen-induced platelet aggregation in a concentration-dependent manner. FRBE significantly and dose dependently attenuated thrombus formation using rat arterio-venous shunt. FRBE suppressed the intracellular calcium mobilization in collagen-stimulated platelets. We also found that FRBE inhibited extracellular stimuli-responsive kinase 1/2, p38-mitogen-activated protein kinases and c-Jun N-terminal kinase phosphorylation. These results suggested that FRBE inhibited collagen-induced platelet aggregation, which was mediated by modulation of downstream signaling molecules. In conclusion, FRBE could be developed as a functional food against aberrant platelet activation-related cardiovascular diseases.

Anti-oxidant and Hepatoprotective Effect of White Ginsengs in H2O2-Treated HepG2 Cells

  • Parthasarathi, Shanmugam;Hong, Se Chul;Oh, Myeong Hwan;Park, Young Sik;Yoo, Ji Hyun;Seol, Su Yeon;Lee, Hwan;Park, Jong Dae;Pyo, Mi Kyung
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.210-218
    • /
    • 2015
  • The antioxidant activity of white ginseng was not recorded in Korea Functional Food Code, while its activity of red ginsengs was recorded. The aim of this study was to evaluate the antioxidant and hepato protective effect of different ginsengs in H2O2-treated HepG2 cells. White and red ginseng were prepared from longitudinal section of the same fresh ginseng (4-year old). The whole parts of white and red ginsengs were separately extracted with 70% ethanol and distilled water respectively, at 70 ℃ to obtain therapeutic ginseng extracts namely, WDH (distilled water extract of white ginseng), WEH (70% ethanol extract of white ginseng), RDH (distilled water extract of red ginseng) and REH (70% ethanol extract of red ginseng). In this work, we have investigated the DPPH, hydroxyl radical, Fe2+-chelating activity, intracellular ROS scavenging capacity and lipid peroxidation of different ginsengs. All these extracts showed a dose dependent free-radical scavenging capacity and a ROS generation as well as lipid peroxidation was significantly reduced by treatment with bioactive extracts of white ginsengs (WDH) than red ginsengs. Additionally, white ginseng extracts (WDH) has dramatically increased intracellular antioxidant enzyme activities like superoxide dismutase and catalase in H2O2-treated HepG2 cells. All these results explain that administration of white ginseng is useful as herbal medicine than red ginseng for chemoprevention of liver damage.

Protective Effects of Hyperoside from Juglans sinensis Leaves against 1-methyl-4-phenylpyridinium-Induced Neurotoxicity (1-methyl-4-phenylpyridinium으로 유도된 신경 손상에 대한 호두나무잎에서 분리된 Hyperoside의 보호 효과)

  • Pariyar, Ramesh;Svay, Thida;Seo, Jungwon
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.3
    • /
    • pp.231-239
    • /
    • 2018
  • Parkinson's disease (PD), one of common neurodegenerative diseases, is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. The loss of dopaminergic neurons in PD is associated with oxidative stress and mitochondrial dysfunction. Hyperoside (quercetin 3-O-${\beta}$-D-galactopyranoside) was reported to have protective properties against oxidative stress by reducing intracellular reactive oxygen species (ROS) and increasing antioxidant enzyme activity. In this study, we examined the neuroprotective effect of hyperoside against 1-methyl-4-phenyl pyridinium ($MPP^+$)-induced cell model of PD and the underlying molecular mechanisms. Hyperoside significantly decreased $MPP^+$-induced cell death, accompanied by a reduction in poly ADP-ribose polymerase (PARP) cleavage. Furthermore, it attenuated $MPP^+$-induced intracellular ROS and disruption of mitochondrial membrane potential (MMP), with the reduction of Bax/Bcl-2 ratio. Moreover, hyperoside significantly increased the phosphorylation of Akt, but it has no effects on $GSK3{\beta}$ and MAPKs. Pharmacological inhibitor of PI3K/Akt abolished the cytoprotective effects of hyperoside against $MPP^+$. Taken together, these results demonstrate that hyperoside significantly attenuates $MPP^+$-induced neurotoxicity through PI3K/Akt signaling pathways in SH-SY5Y cells. Our findings suggest that hyperoside might be one of the potential candidates for the treatment of PD.

Exploration of β-Glucosidase Activity of Lactic Acid Bacteria Isolated from Kimchi (김치에서 분리된 젖산균의 β-glucosidase 활성 탐색)

  • Jang, Mi-Hee;Kim, Myoung-Dong
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.243-248
    • /
    • 2010
  • The ${\beta}$-glucosidase (E.C. 3.2.1.21) production capabilities of lactic acid bacteria isolated from a variety of kimchi (fermented vegetables) were examined. When grown in a medium containing cellobiose as carbon source, most lactic acid bacteria showed significantly higher intracellular levels of ${\beta}$-glucosidase than the extracellular levels. A maximum intracellular ${\beta}$-glucosidase activity of 3.7${\pm}$0.5 (unit/mg protein) was obtained in the case of Weissella cibaria KFRI88010 isolated from kimchi. The optimum reaction conditions for W. cibaria KFRI88010 ${\beta}$-glucosidase activity were pH 5.0 and ${37^{\circ}C}$, and addition of divalent cations to the reaction mixture resulted in a notable decrease in enzyme activity. The ${\beta}$-glucosidase activity was enhanced twofold when W. cibaria KFRI88010 was grown in a medium containing fructose as compared with to a medium containing glucose or cellobiose.

Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by Lactococcus lactis

  • Lu, Chuanchuan;Liu, Yanfeng;Li, Jianghua;Liu, Long;Du, Guocheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.154-162
    • /
    • 2021
  • L-5-methyltetrahydrofolate (5-MTHF) is one of the biological active forms of folate, which is widely used as a nutraceutical. However, low yield and serious pollution associated with the chemical synthesis of 5-MTHF hampers its sustainable supply. In this study, 5-MTHF production was improved by engineering the 5-MTHF biosynthesis pathway and NADPH supply in Lactococcus lactis for developing a green and sustainable biosynthesis approach. Specifically, overexpressing the key rate-limiting enzyme methylenetetrahydrofolate reductase led to intracellular 5-MTHF accumulation, reaching 18 ㎍/l. Next, 5-MTHF synthesis was further enhanced by combinatorial overexpression of 5-MTHF synthesis pathway enzymes with methylenetetrahydrofolate reductase, resulting in 1.7-fold enhancement. The folate supply pathway was strengthened by expressing folE encoding GTP cyclohydrolase I, which increased 5-MTHF production 2.4-fold to 72 ㎍/l. Furthermore, glucose-6-phosphate dehydrogenase was overexpressed to improve the redox cofactor NADPH supply for 5-MTHF biosynthesis, which led to a 60% increase in intracellular NADPH and a 35% increase in 5-MTHF production (97 ㎍/l). To reduce formation of the by-product 5-formyltetrahydrofolate, overexpression of 5-formyltetrahydrofolate cyclo-ligase converted 5-formyltetrahydrofolate to 5,10-methyltetrahydrofolate, which enhanced the 5-MTHF titer to 132 ㎍/l. Finally, combinatorial addition of folate precursors to the fermentation medium boosted 5-MTHF production, reaching 300 ㎍/l. To the best of our knowledge, this titer is the highest achieved by L. lactis. This study lays the foundation for further engineering of L. lactis for efficient 5-MTHF biosynthesis.

Protective effect of Capsosiphon fulvescens on oxidative stress-stimulated neurodegenerative dysfunction of PC12 cells and zebrafish larva models

  • Laxmi Sen Thakuri;Jung Eun Kim;Jin Yeong Choi;Dong Young Rhyu
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.1
    • /
    • pp.24-34
    • /
    • 2023
  • Reactive oxygen species (ROS) at high concentrations induce oxidative stress, an imbalanced redox state that is a prevalent cause of neurodegenerative disorders. This study aimed to investigate the protective effect of Capsosiphon fulvescens (CF) extract on oxidative stress-induced impairment of cognitive function in models of neurodegenerative diseases. CF was extracted with subcritical water and several solvents and H2O2 (0.25 mM) or aluminum chloride (AlCl3; 25 µM) as an inducer of ROS was treated in PC12 neuronal cells and zebrafish larvae. All statistical analyses were performed using one-way analysis of variance and Dunnett's test using GraphPad Prism. H2O2 and AlCl3 were found to significantly induce ROS production in PC12 neuronal cells and zebrafish larvae. In addition, they strongly affected intracellular Ca2+ levels, antioxidant enzyme activity, brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) signaling, acetylcholinesterase (AChE) activity, and hallmarks of Alzheimer's disease. However, treatment of H2O2-induced PC12 cells or AlCl3-induced zebrafish larvae with CF subcritical water extract at 90℃ and CF water extract effectively regulated excessive ROS production, intracellular Ca2+ levels, and mRNA expression of superoxide dismutase, glutathione peroxide, glycogen synthase kinase-3 beta, β-amyloid, tau, AChE, BDNF, and TrkB. Our study suggested that CF extracts can be a potential source of nutraceuticals that can improve the impairment of cognitive function and synaptic plasticity by regulating ROS generation in neurodegenerative diseases.

Cell Biological Studies on Brain Formation at the Early Stage of Chick Embryogenesis (초기계배의 뇌 형성에 관한 세포 생물학적 연구)

  • 최임순;주충노;최춘근;김재원;주상옥
    • The Korean Journal of Zoology
    • /
    • v.29 no.3
    • /
    • pp.215-233
    • /
    • 1986
  • The effect of tryptophan on brain formation at the early stage of chick embryo has been investigated morphologically using electron microscope. The electron micrographs of cerebral cortex cells of $5\\sim10$ day old chick embryo, which received 1.0mg of tryptophan showed that the irregularity, evagination and disruption of nuclear membrane and nuclear chromatin condensation, nucleolar chromatin margination and segragation. Hypertrophy of stalks, vesicles, and vacuoles can be seen and dilation and vesiculation of rough endoplamic reticulum and polysome disaggregation occured. Protein and RNA levels and the activity of several enzymes such as lactate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and glucose 6-phosphate dehydrogenase of tryptophan administered group were significantly lower than those of control group suggesting that the tryptophan administration depressed protein biosynthesis resulting in the decrease of enzyme activity. It was found that serotonin content of egg yolk which has been incubated for 10 days were as much as three times that of control egg yolk. It is not clear whether the increase of serotonin content might inhibit intracellular yolk granule degradation which might result in malformation of chick embryo, but it is likely that tryptophan administration might depress protein biosynthesis, consequently, the enzyme biosynthesis would be impaired. This might give rise to improper development of chick embryo.

  • PDF

Comparison of Metabolic Pathways of Less Orthologous Prokaryotes than Mycoplasma genitalium (Mycoplasma genitalium 보다 보존적 유전자 수가 작은 원핵생물들의 대사경로 비교)

  • Lee, Dong-Geun
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.369-375
    • /
    • 2018
  • Mycoplasma genitalium has 367 conserved genes and the smallest genome among mono-culturable prokaryotes. Conservative metabolic pathways were examined among M. genitalium and 14 prokaryotes, one hyperthermophilic exosymbiotic archaeon Nanoarchaeum equitans and 13 intracellular eubacteria of plants or insects, with fewer conserved genes than M. genitalium. They have 11 to 71 metabolic pathways, however complete metabolic pathways ranged from 1 to 24. Totally, metabolic pathway hole is very high due to the lack of 45.8% of the enzymes required for the whole metabolic pathways and it could be suggested that the shared metabolic pathway with the host's enzyme would work or the essential substances are host dependent. The number of genes necessary for mass transfer through the cell membrane is also very low, and it may be considered that the simple diffusion or the protein of the host will function in the cell membrane of these prokaryotes. Although the tRNA charging pathway was distributed in all 15 prokaryotes, each has 5-20 tRNA charging genes. This study would give clues to the understanding of the metabolic pathways of intracellular parasitic bacteria of plant and endosymbiotic bacteria of insects, and could provide basic data for prevention of crop damage, development of insect pests and human medicines.