Browse > Article
http://dx.doi.org/10.4014/jmb.1910.10069

Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by Lactococcus lactis  

Lu, Chuanchuan (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University)
Liu, Yanfeng (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University)
Li, Jianghua (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University)
Liu, Long (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University)
Du, Guocheng (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.1, 2021 , pp. 154-162 More about this Journal
Abstract
L-5-methyltetrahydrofolate (5-MTHF) is one of the biological active forms of folate, which is widely used as a nutraceutical. However, low yield and serious pollution associated with the chemical synthesis of 5-MTHF hampers its sustainable supply. In this study, 5-MTHF production was improved by engineering the 5-MTHF biosynthesis pathway and NADPH supply in Lactococcus lactis for developing a green and sustainable biosynthesis approach. Specifically, overexpressing the key rate-limiting enzyme methylenetetrahydrofolate reductase led to intracellular 5-MTHF accumulation, reaching 18 ㎍/l. Next, 5-MTHF synthesis was further enhanced by combinatorial overexpression of 5-MTHF synthesis pathway enzymes with methylenetetrahydrofolate reductase, resulting in 1.7-fold enhancement. The folate supply pathway was strengthened by expressing folE encoding GTP cyclohydrolase I, which increased 5-MTHF production 2.4-fold to 72 ㎍/l. Furthermore, glucose-6-phosphate dehydrogenase was overexpressed to improve the redox cofactor NADPH supply for 5-MTHF biosynthesis, which led to a 60% increase in intracellular NADPH and a 35% increase in 5-MTHF production (97 ㎍/l). To reduce formation of the by-product 5-formyltetrahydrofolate, overexpression of 5-formyltetrahydrofolate cyclo-ligase converted 5-formyltetrahydrofolate to 5,10-methyltetrahydrofolate, which enhanced the 5-MTHF titer to 132 ㎍/l. Finally, combinatorial addition of folate precursors to the fermentation medium boosted 5-MTHF production, reaching 300 ㎍/l. To the best of our knowledge, this titer is the highest achieved by L. lactis. This study lays the foundation for further engineering of L. lactis for efficient 5-MTHF biosynthesis.
Keywords
L-5-Methyltetrahydrofolate; Lactococcus lactis; metabolic engineering; strengthening synthetic pathway; NADPH supply;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arcot J, Shrestha A. 2005. Folate: methods of analysis. Trends Food Sci. Technol. 16: 253-266.   DOI
2 Asrar FM, O'Connor DL. 2005. Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets. J. Nutr. Biochem. 16: 587-593.   DOI
3 Kelly P, McPartlin J, Goggins M, Weir DG, Scott JM. 1997. Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am. Clin. Nutr. 65: 1790-1795.   DOI
4 Bailey LB, Gregory III JF. 1999. Folate metabolism and requirements. J. Nutr. 129: 779-782.   DOI
5 Kim Y-I. 2000. Methylenetetrahydrofolate reductase polymorphisms, folate, and cancer risk: a paradigm of gene-nutrient interactions in carcinogenesis. Nutr. Rev. 58: 205-209.   DOI
6 Blom HJ, Smulders Y. 2011. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J. Inherit. Metab. Dis. 34: 75-81.   DOI
7 Hubner R, Houlston R. 2009. Folate and colorectal cancer prevention. Br. J. Cancer 100: 233-239.   DOI
8 Poe M, Hensens O, Hoogsteen K. 1979. 5-Methyl-5, 6, 7, 8-tetrahydrofolic acid. Conformation of the tetrahydropyrazine ring. J. Biol. Chem. 254: 10881-10884.   DOI
9 LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. 2013. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24: 160-168.   DOI
10 Song AA-L, In LLA, Lim SHE, Rahim RA. 2017. A review on Lactococcus lactis: from food to factory. Microb. Cell Fact. 16: 55.   DOI
11 Bermingham A, Derrick JP. 2002. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 24: 637-648.   DOI
12 Hanson AD, Gregory Iii JF. 2002. Synthesis and turnover of folates in plants. Curr. Opin. Plant Biol. 5: 244-249.   DOI
13 Hugenschmidt S, Schwenninger SM, Lacroix C. 2011. Concurrent high production of natural folate and vitamin B12 using a co-culture process with Lactobacillus plantarum SM39 and Propionibacterium freudenreichii DF13. Process Biochem. 46: 1063-1070.   DOI
14 Blancquaert D, Storozhenko S, Loizeau K, De Steur H, De Brouwer V, Viaene J, et al. 2010. Folates and folic acid: from fundamental research toward sustainable health. Crit. Rev. Plant Sci. 29: 14-35.   DOI
15 Nduati E, Diriye A, Ommeh S, Mwai L, Kiara S, Masseno V, et al. 2008. Effect of folate derivatives on the activity of antifolate drugs used against malaria and cancer. Parasitol. Res. 102: 1227-1234.   DOI
16 Das JS, Duttagupta C, Ali E, Dhar TK. 1995. Improved microbiological assay for folic acid based on microtiter plating with Streptococcus faecalis. J. AOAC Int. 78: 1173-1177.   DOI
17 Lin M, Young C. 2000. Folate levels in cultures of lactic acid bacteria. Int. Dairy J. 10: 409-413.   DOI
18 Delchier N, Reich M, Renard CM. 2012. Impact of cooking methods on folates, ascorbic acid and lutein in green beans (Phaseolus vulgaris) and spinach (Spinacea oleracea). LWT-Food Sci. Technol. 49: 197-201.   DOI
19 Berry RJ, Bailey L, Mulinare J, Bower C, Dary O. 2010. Fortification of flour with folic acid. Food Nutr. Bull. 31: S22-S35.   DOI
20 Wright AJ, Dainty JR, Finglas PM. 2007. Folic acid metabolism in human subjects revisited: potential implications for proposed mandatory folic acid fortification in the UK. Br. J. Nutr. 98: 667-675.   DOI
21 Ohrvik VE, Witthoft CM. 2011. Human folate bioavailability. Nutrients 3: 475-490.   DOI
22 Christensen KE, Mikael LG, Leung K-Y, Levesque N, Deng L, Wu Q, et al. 2015. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am. J. Clin. Nutr. 101: 646-658.   DOI
23 Hu J, Wang B, Sahyoun NR. 2016. Application of the key events dose-response framework to folate metabolism. Crit. Rev. Food Sci. Nutr. 56: 1325-1333.   DOI
24 Sybesma W, Starrenburg M, Kleerebezem M, Mierau I, de Vos WM, Hugenholtz J. 2003. Increased production of folate by metabolic engineering of Lactococcus lactis. Appl. Environ. Microbiol. 69: 3069-3076.   DOI
25 Maniatis T, Fritsch EF, Sambrook J. 1983. Molecular cloning : a laboratory manual. Anal. Biochem. 186: 182-183.
26 Holo H, Nes IF. 1989. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55: 3119-3123.   DOI
27 Mancini R, Saracino F, Buscemi G, Fischer M, Schramek N, Bracher A, et al. 1999. Complementation of the fol2 Deletion in Saccharomyces cerevisiae by human and Escherichia coli genes encoding GTP cyclohydrolase I. Biochem. Biophys. Res. Commun. 255: 521-527.   DOI
28 Plamann M, Stauffer G. 1989. Regulation of the Escherichia coli glyA gene by the metR gene product and homocysteine. J. Bacteriol. 171: 4958-4962.   DOI
29 Choi KE, Schilsky RL. 1988. Resolution of the stereoisomers of leucovorin and 5-methyltetrahydrofolate by chiral high-performance liquid chromatography. Anal. Biochem. 168: 398-404.   DOI
30 Rossi M, Raimondi S, Costantino L, Amaretti A. 2016. Folate: Relevance of chemical and microbial production. pp.103-128. Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants.
31 Zhu T, Pan Z, Domagalski N, Koepsel R, Ataai M, Domach M. 2005. Engineering of Bacillus subtilis for enhanced total synthesis of folic acid. Appl. Environ. Microbiol. 71: 7122-7129.   DOI
32 Serrano-Amatriain C, Ledesma-Amaro R, Lopez-Nicolas R, Ros G, Jimenez A, Revuelta JL. 2016. Folic acid production by engineered Ashbya gossypii. Metab. Eng. 38: 473-482.   DOI
33 Sybesma W, Burgess C, Starrenburg M, van Sinderen D, Hugenholtz J. 2004. Multivitamin production in Lactococcus lactis using metabolic engineering. Metab. Eng. 6: 109-115.   DOI
34 Li S, Zhang J, Xu H, Feng X. 2016. Improved xylitol production from D-Arabitol by enhancing the coenzyme regeneration efficiency of the pentose phosphate pathway in Gluconobacter oxydans. J. Agric. Food Chem. 64: 1144-1150.   DOI
35 Leeming R, Pollock A, Melville L, Hamon C. 1990. Measurement of 5-methyltetrahydrofolic acid in man by high-performance liquid chromatography. Metabolism 39: 902-904.   DOI
36 Nandania J, Kokkonen M, Euro L, Velagapudi V. 2018. Simultaneous measurement of folate cycle intermediates in different biological matrices using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 1092: 168-178.   DOI
37 Jabrin S, Ravanel S, Gambonnet B, Douce R, Rebeille F. 2003. One-carbon metabolism in plants. regulation of tetrahydrofolate synthesis during germination and seedling development. Plant Physiol. 131: 1431-1439.   DOI
38 Yang J, Ogawa Y, Camakaris H, Shimada T, Ishihama A, Pittard A. 2007. folA, a new member of the TyrR regulon in Escherichia coli K-12. J. Bacteriol. 189: 6080-6084.   DOI
39 Jin X-M, Chang Y-K, Lee JH, Hong S-K. 2017. Effects of increased NADPH concentration by metabolic engineering of the pentose phosphate pathway on antibiotic production and sporulation in Streptomyces lividans TK24. J. Microbiol. Biotechnol. 27: 1867-1876.   DOI
40 Basset GJ, Quinlivan EP, Ravanel S, Rebeille F, Nichols BP, Shinozaki K, et al. 2004. Folate synthesis in plants: the p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids. Proc. Natl. Acad. Sci. USA 101: 1496-1501.   DOI
41 Christodoulou D, Link H, Fuhrer T, Kochanowski K, Gerosa L, Sauer U. 2018. Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli's rapid response to oxidative stress. Cell Syst. 6: 569-578. e567.   DOI
42 Rui B, Shen T, Zhou H, Liu J, Chen J, Pan X, et al. 2010. A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress. BMC Syst. Biol. 4: 122.   DOI
43 Jägerstad M, Jastrebova J. 2013. Occurrence, stability, and determination of formyl folates in foods. J. Agric. Food Chem. 61: 9758-9768.   DOI
44 Kim J-H, Sung M-W, Lee E-H, Nam K-H, Hwang K-Y. 2008. Crystallization and preliminary X-ray diffraction analysis of 5, 10-methylenetetrahydrofolate dehydrogenase/cyclohydrolase from Thermoplasma acidophilum DSM 1728. J. Microbiol. Biotechnol. 18: 283-286.
45 Solem C, Dehli T, Jensen PR. 2013. Rewiring Lactococcus lactis for ethanol production. Appl. Environ. Microbiol. 79: 2512-2518.   DOI
46 Li Y, Hugenholtz J, Sybesma W, Abee T, Molenaar D. 2005. Using Lactococcus lactis for glutathione overproduction. Appl. Microbiol. Biotechnol. 67: 83-90.   DOI
47 van de Guchte M, Van der Vossen J, Kok J, Venema G. 1989. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55: 224-228.   DOI