• Title/Summary/Keyword: intracellular calcium

Search Result 468, Processing Time 0.032 seconds

Calcium Homeostasis and Regulation of Calbindin-D9k by Glucocorticoids and Vitamin D as Bioactive Molecules

  • Choi, Kyung-Chul;Jeung, Eui-Bae
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.125-132
    • /
    • 2009
  • Calbindin-$D_{9k}$ (CaBP-9k), a cytosolic calcium-binding protein, is expressed in a variety of tissues, i.e., the duodenum, uterus, placenta, kidney and pituitary gland. Duodenal CaBP-9k is involved in intestinal calcium absorption, and is regulated at transcriptional and post-transcriptional levels by 1,25-dihydroxyvitamin D3, the hormonal form of vitamin D, and glucocorticoids (GCs). Uterine CaBP-9k has been implicated in the regulation of myometrial action(s) through modulation of intracellular calcium, and steroid hormones appear to be the main regulators in its uterine and placental regulation. Because phenotypes of CaBP-9k-null mice appear to be normal, other calcium-transporter genes may compensate for its gene deletion and physiological function in knockout mice. Previous studies indicate that CaBP-9k may be controlled in a tissue-specific fashion. In this review, we summarize the current information on calcium homeostasis related to CaBP-9k gene regulation by GCs, vitamin D and its receptors, and its molecular regulatory mechanism. In addition, we present related data from our current research.

Biochemical Characterization of a Putative Calcium Influx Factor as a Diffusible Messenger in Jurkat Cells, Xenopis Oocytes, and Yeast

  • Kim, Hak-Yong
    • Animal cells and systems
    • /
    • v.7 no.1
    • /
    • pp.75-79
    • /
    • 2003
  • Highly purified high performance thin layer chromatography (HPTLC) fractions containing a putative calcium influx factor (CIF) were prepared from the Jurkat cells and Xenopus oocytes in which $Ca^{2+}$ stores were depleted by thapsigargin treatment and from the yeast in which intracellular $Ca^{2+}$ stores were also depleted by genetic means. Microinjection of the fractions has been shown to elicit $Ca^{2+}$ dependent currents in Xenopus oocytes. The nature of the membrane currents evoked by the putative CIF appeared to be carried by chloride ions since the current was blocked by the selective chloride channel blocker 1 mM niflumic acid and its reversal potential was about -24 mV. Injection of the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N, N, N',N'-tetraacetic acid (BAPTA) eradicated the current activities, suggesting the current responses are entirely $Ca^2$-dependent. Moreover, the currents were sensitive to the removal of extracellular calcium, indicating the dependence on calcium entry through the plasma membrane calcium entry channels. CIF activities were insensitive to protease, heat, and acid treatments and to Dische-reaction whereas the activities were sensitive to nucleotide pyrophosphatase and hydrazynolysis. The fraction might have a sugar because it was sensitive to Molisch test and Seliwaniff's resorcinol reaction. From the above results, CIF as a small and stable molecule seems to have pyrimidine, pyrophosphate, and a sugar moiety.oiety.

Effects of Amitriptyline and Imipramine on Superoxide Generation, Myeloperoxidase Release, Leukotriene $B_4$ in Human Neutrophils (Amitriptyline과 Imipramine이 호중구에서의 Superoxide 생성, Myeloperoxidase 유리, Leukotriene $B_4$생성과 칼슘 동원에 나타내는 영향)

  • Shin Yong-Kyoo;Lee Chung-Soo;Lee Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.123-133
    • /
    • 1995
  • A number of tricyclic antidepressants appear to have inhibitory action on calmodulin. Although amitriptyline, imipramine and doxepine have been shown to inhibit calcium uptake, oxidative phosphorylation and ATPase activities, effects of amitriptyline, imipramine and doxepine on functional responses of human neutrophils have not been elucidated. In this study, effects amitriptyline, imipramine and doxepine on superoxide and hydrogen peroxide generation, myeloperoxidase release, leukocriene B4 formation and intracellular calcium level were investigated. Superoxide and hydrogen peroxide production in heat aggregated IgG-activated neutrophils were inhibited by amitriptyline, imipramine and doxepine. EDTA, EGTA, verapamil and bepredil inhibited heat aggregated IgG-induced superoxide production. Chlorpromazine, trifluoperazine, staurosporine and H-7 also inhibited it. PMA-induced superoxide production was inhibited by amitriptyline, imipramine, doxepine, chlorpromazine and H-7. Amitriptyline, imipramine, chlorpromazine and trifluoperazine inhibited the myeloperoxidase release by heat aggregated IgG. Productions of $LTB_4$, and 5-HETE in heat aggregated IgG-activated neutrophils were inhibited by amitriptyline, imipramine and doxepine. In neutrophils, elevation of intracellular calcium induced by heat aggregated IgG was inhibited by amitriptyline, imipramine, doxepine, chlorpromazine and EGTA, while verapamil slightly inhibited increase of intracellular calcium and H-7 did not inhibit it. These results suggest that the inhibitory effect of amitriptyline, imipramine and doxepine on respiratory burst, myeloperoxidase release and LTB4 production in heat aggregated IgG-activated neutrophils appears to be ascribed to the inhibition of calcium mobilization, calmodulin and protein kinase C.

  • PDF

Preliminary study on the effect of inflamed TMJ synovial fluid on the intracellular calcium concentration and differential expression of iNOS and COX-2 in human immortalized chondrocyte C28/I2

  • Choi, Eun-Ah;Lee, Dong-Geun;Chae, Chang-Hoon;Chang, Young-Il;Park, Young-Ju;Kim, Young-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.1
    • /
    • pp.36-41
    • /
    • 2006
  • Objective. The objective of this study was to examine the hypothesis that inflammatory synovial fluid from TMJ internal derangement initiates a transient increase in intracellular calcium concentration ([$Ca^{2+}$]i) in chondrocytes and the induced Ca2+ signaling affects iNOS/COX-2 gene expression patterns following exposure to inflamed synovial fluid. Materials and Methods. Two female adult patients with symptoms of TMD who agreed to participate in the study were selected for this study. Immortalized human juvenile costal chondrocyte C-28/I2 was grown to 80% confluency and synovial fluids from two patients were added respectively to culture media for 24 hours at the concentration of 100ng/10ml. Confocal laser scanning microscope (CLSM) was used to examine changes of intracellular calcium concentration ([$Ca^{2+}$]i). RT-PCR was performed to identify the expression profile of IL-1${\alpha}$, iNOS, COX-2. Results. Increased [$Ca^{2+}$]i was observed in chondrocytes subjected to inflamed synovial fluid compared to control cultures and in respective cultures exposed to inflamed synovial fluids from each patient, IL-1${\beta}$, COX-2 mRNA were detected. However, in neither case iNOS mRNA was expressed. IL-1${\alpha}$, COX-2, and iNOS mRNA were expressed in control culture. Conclusion. Our results show that immortalized chondrocytes cultured with inflamed synovial fluids from patients diagnosed as disc displacement without reduction and limitation in mouth opening showed increased calcium concentration and expression of COX-2 while inhibiting the production of iNOS, which in turn could adversely affect the chondrocytes in at least short term by hindering physiologic role of NO against inflammatory cascades. These findings suggest that inflamed synovial fluid may differentially regulate the transcriptomes of relevant inflammatory mediators, especially iNOS/COX-2 axis in chondrocytes through adjusting calcium transients.

Production of Intracellular Calcium Oscillation by Phospholipase C Zeta Activation in Mammalian Eggs

  • Yoon, Sook-Young;Kang, Da-Won
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.197-204
    • /
    • 2011
  • Egg activation is a crucial step that initiates embryo development upon breaking the meiotic arrest. In mammalian, egg activation is accomplished by fusion with sperm, which induces the repeated intracellular $Ca^{2+}$- increases ($[Ca^{2+}]_i$ oscillation). Researches in mammals support the view of the $[Ca^{2+}]_i$ oscillation and egg activation is triggered by a protein factor from sperm that causes $[Ca^{2+}]_i$ release from endoplasmic reticulum, intracellular $[Ca^{2+}]_i$ store, by persistently activation of phosphoinositide pathway. It represents that the sperm factor generates production of inositol trisphosphate ($IP_3$). Recently a sperm specific form of phospholipase C zeta, referred to as PLCZ was identified. In this paper, we confer the evidence that PLCZ represent the sperm factor that induces $[Ca^{2+}]_i$ oscillation and egg activation and discuss the correlation of PLCZ and infertility.

Effects of Protein Kinases on Phospholipase C Activation and Intracellular $Ca^{2+}$ Mobilization Induced by Endothelin-1 (Endothelin-1에 의한 phospholipase C 활성화와 세포내 $Ca^{2+}$ 이동에 미치는 protein kinase들의 효과)

  • 조중형;김현준;이윤혜;박진형;장용운;이승준;이준한;윤정이;김창종
    • YAKHAK HOEJI
    • /
    • v.44 no.2
    • /
    • pp.162-168
    • /
    • 2000
  • To investigate the effects of protein kinases on endothelin-1-induced phospholipase C activation and $Ca^{2+}$ mobilization in Rat-2 fibroblast, we measured the formation of inositol phosphates and intracellular $Ca^{2+}$ concentration with [$^3$H]inositol and Fura-2/AM, respectively. Endothelin-1 dose-dependently activated phospholipase C and increased intracellular $Ca^{2+}$ concentration. Protein kinase C activator PMA, significantly inhibited both phospholipase C activity and $Ca^{2+}$ mobilization induced by endothelin-1. Tyrosine kinase inhibitor, genistein, inhibited both. On the other hand, cyclic nucleotide (cAMP and cGMP) did not have any influence on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1. These results suggest that protein kinase C and tyrosine kinase counteract on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1 in Rat-2 fibroblast. fibroblast.

  • PDF

Effect of Extracts from Safflower Seeds on Osteoblastic Differentiation and Intracellular Free Calcium Concentration in MC3T3-El Cells

  • Jang, Hye-Ock;Eom, Hyun-Sup;Roh, Sung-Bae;Yun, ll
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.55-62
    • /
    • 2005
  • Very little research has been carried out on safflower seed for the prevention and treatment of the bone deficiency diseases, including osteoporosis, which are supported by scientific evidences. In the present study, $3{\mu}l$ of 0.1% dried crude extract or $2{\mu}l$ of 0.1% dried aqueous fraction were shown to significantly accelerate the rate of differentiation of osteoblast. Also, the crude extract and aqueous fraction increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells: $3{\mu}l$ of 0.1% dried crude extract and $2{\mu}l$ of 0.1% dried aqueous fraction significantly increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells ($8{\times}10^{-4}$) to the extent that it deserves a considerable attention. Furthermore, the crude extract and aqueous fraction increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells, and $300{\mu}M$ $Cd^{2+}$, specific calcium channel blocker, completely blocked the increase. Therefore, the increased $[Ca^{2+}]_i$ of the cultured osteoblast cells by safflower seed component continued to activate calcium channel.

Effects of Nelumbinis Semen on Contractile Dysfunction in Ischemic and Reperfused Rat Heart

  • Kim, Jong-Hoon;Kang, Moon-Kyu;Cho, Chong-Woon;Chung, Hwan-Suck;Kang, Chang-Woon;Parvez, Shoukat;Bae, Hyun-Su
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.777-785
    • /
    • 2006
  • Nelumbinis Semen (NS), or lotus seed, is one of the most well-known traditional herbal medicines and is frequently used to treat cardiovascular symptoms in Korea. The anti-ischemic effects of NS on ischemia-induced isolated rat heart were investigated through analyses of changes in blood pressure, aortic flow, coronary flow, and cardiac output. The subjects in this study were divided into two groups: a control, untreated ischemia-induced group, and an ischemia-induced group treated with NS. There were no significant differences in perfusion pressure, aortic flow, coronary flow and cardiac output between the groups before ischemia was induced. The supply of oxygen and buffer was stopped for ten minutes to induce ischemia in isolated rat hearts, and NS was administered during ischemia induction. NS treatment significantly prevented decreases in perfusion pressure, aortic flow, coronary flow and cardiac output under ischemic conditions (p<0.01). In addition, the mechanism of the anti-ischemic effects of NS was also examined through quantitation of intracellular calcium content in rat neonatal cardiomyocytes. NS significantly prevented intracellular calcium increases induced by isoproterenol (p<0.01). These results suggest that NS has distinct anti-ischemic effects through calcium antagonism.

Cellular Mechanism of Nicotine-mediated Intracellular Calcium Homeostasis in Primary Culture of Mouse Cerebellar Granule Cells (니코틴의 마우스 소뇌과립세포내 칼슘의 항상성 조절기전)

  • Kim, Won-Ki;Pae, Young-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.13-21
    • /
    • 1996
  • Intracellular calcium concentration ($[Ca^{2+}]_i$) may play a crucial role in a variety of neuronal functions. Here we report that in primary culture of mouse cerebellar granule cells nicotinic acetylcholine receptors (nAChRs) are expressed in a specific developmental stage and involved in the regulation of intracellular calcium homeostasis. Nicotine-mediated calcium responses were measured using $^{45}Ca^{2+}$ or fluorometrically using the calcium-sensitive fluorescent dye fura-2. Maximal uptake of $^{45}Ca^{2+}$ evoked by nicotine in mouse cerebellar granule cells were revealed $8{\sim}12$ days in culture. In contrast, nicotine did not alter the basal $^{45}Ca^{2+}$ uptake in cultured glial cells. In cerebellar granule cells nicotine-evoked $^{45}Ca^{2+}$ uptake was largely blocked by the NMDA receptor antagonists. Glutamate pyruvate transaminase (GPT). which removes endogenous glutamate, also prevented nicotine effects, implying the indirect involvement of glutamate in nicotine-mediated calcium responses. Fluorometric studies using fura-2 showed two phases of nicotine-evoked $[Ca^{2+}]_i$ rises: the initial rising phase and the later plateau phase. Interestingly, the NMDA receptor antagonists and GPT appeared to inhibit only the later plateau phase of nicotine-evoked $[Ca^{2+}]_i$ rises. The present results imply that nicotine mediated $^{45}Ca^{2+}$ uptake and $[Ca^{2+}]_i$ rises are attributed to the calcium fluxes through both nAchRs and NMDA receptors in a time-dependent manner. Consequently, nAChRs may play an important role in neuronal development by being expressed in a specific developmental stage and regulating the intracellular calcium homeostasis.

  • PDF

Requirement of EGF Receptor Kinase for Signaling by Calcium-Induced ERK Activation and Neurite Outgrowth in PC12 Cells

  • Park, Jung-Gyu;Jo, Young-Ah;Kim, Yun-Taik;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.468-474
    • /
    • 1998
  • Membrane depolarization in PC12 cells induces calcium influx via an L-type voltage-sensitive calcium channel (L-VSCC) and increases intracellular free calcium, which leads to tyrosine phosphorylation of epidermal growth factor (EGF) receptor and the associated adaptor protein, She. This activated EGF receptor complex then can activate mitogen-activated protein (MAP) kinase, as in nerve growth factor (NGF) receptor activation. In the present study, we investigated the role of EGF receptor in the signaling pathway initiated by membrane depolarization of PC12 cells. Prolonged membrane depolarization induced phosphorylation of extracellular signal-regulated kinase (ERK) within 1 min in undifferentiated PC12 cells. Pretreatment of PC12 cells with the calcium chelator EGTA abolished depolarization-stimulated ERK phosphorylation, but NGF-induced phosphorylation of ERK was not affected. The chronic treatment of phorbol ester, which down-regulated the activity of protein kinase C (PKC), did not affect the phosphorylation of ERK upon depolarization. In the presence of an inhibitor of EGF receptor, neither depolarization nor calcium ionophore increased the level of ERK phosphorylation. These data imply that the EGF receptor is functionally necessary to activate ERK and neurite outgrowth in response to the prolonged depolarization in PC12 cells, and also that PKC is apparently not involved in this signaling pathway.

  • PDF