• Title/Summary/Keyword: intestinal cell division

Search Result 73, Processing Time 0.034 seconds

Effects of lactic acid bacteria fermented feed and three types of lactic acid bacteria (L. plantarum, L. acidophilus, B. animalis) on intestinal microbiota and T cell polarization (Th1, Th2, Th17, Treg) in the intestinal lymph nodes and spleens of rats

  • Da Yoon, Yu;Sang-Hyon, Oh;In Sung, Kim;Gwang Il, Kim;Jeong A, Kim;Yang Soo, Moon;Jae Cheol, Jang;Sang Suk, Lee;Jong Hyun, Jung;Hwa Chun, Park;Kwang Keun, Cho
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.156-166
    • /
    • 2023
  • Objective: In this study, we investigated the effects of Rubus coreanus-derived lactic acid bacteria (LAB) fermented feed (RC-LAB fermented feed) and three types of LAB (Lactobacillus plantarum, Lactobacillus acidophilus, Bifidobacterium animalis) on the expression of transcription factors and cytokines in Th1, Th2, Th17, and Treg cells in the intestinal lymph nodes and spleens of rats. In addition, the effect on intestinal microbiota composition and body weight was investigated. Methods: Five-week-old male rats were assigned to five treatments and eight replicates. The expression of transcription factors and cytokines of Th1, Th2, Th17, and Treg cells in the intestinal lymph nodes and spleens was analyzed using real-time reverse transcriptase polymerase chain reaction assays. Intestinal tract microbiota compositions were analyzed by next-generation sequencing and quantitative polymerase chain reaction assays. Results: RC-LAB fermented feed and three types of LAB increased the expression of transcription factors and cytokines in Th1, Treg cells and Galectin-9, but decreased in Th2 and Th17 cells. In addition, the intestinal microbiota composition changed, the body weight and Firmicutes to Bacteroidetes (F/B) ratio decreased, and the relative abundance of LAB increased. Conclusion: LAB fermented feed and three types of LAB showed an immune modulation effect by inducing T cell polarization and increased LAB in the intestinal microbiota.

Inhibition of Overexpressed CDC-25.1 Phosphatase Activity by Flavone in Caenorhabditis elegans

  • Kim, Koo-Seul;Kawasaki, Ichiro;Chong, Youhoon;Shim, Yhong-Hee
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.345-350
    • /
    • 2009
  • We previously reported that flavone induces embryonic lethality in Caenorhabditis elegans, which appeared to be the result of cell cycle arrest during early embryogenesis. To test this possibility, here we examined whether flavone inhibits the activity of a key cell cycle regulator, CDC-25.1 in C. elegans. A gain-of-function cdc-25.1 mutant, rr31, which exhibits extra cell divisions in intestinal cells, was used to test the inhibitory effects of flavone on CDC-25 activity. Flavone inhibited the extra cell divisions of intestinal cells in rr31, and modifications of flavone reduced the inhibitory effects. The inhibitory effects of flavone on CDC-25.1 were partly, if not completely, due to transcriptional repression.

Culturing of Rat Intestinal Epithelial Cells-18 on Plasma Polymerized Ethylenediamine Films Deposited by Plasma Enhanced Chemical Vapor Deposition

  • Choi, Chang-Rok;Kim, Kyung-Seop;Kim, Hong-Ja;Park, Heon-Yong;Jung, Dong-Geun;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1357-1359
    • /
    • 2009
  • Many researchers studied cell culturing on surfaces with chemical functional groups. Previously, we reported surface properties of plasma polymerized ethylenediamine (PPEDA) films deposited by plasma enhanced chemical vapor deposition with various plasma conditions. Surface properties of PPEDA films can be controlled by plasma power during deposition. In this work, to analyze correlation of cell adherence/proliferation with surface property, we cultured rat intestinal epithelial cells-18 on the PPEDA films deposited with various plasma powers. It was shown that as plasma power was decreased, density of cells cultured on the PPEDA film surface was increased. Our findings indicate that plasma power changed the amine density of the PPEDA film surface, resulting in density change of cells cultured on the PPEDA film surface.

Inhibition of Escherichia coli O157:H7 Attachment by Interactions Between Lactic Acid Bacteria and Intestinal Epithelial Cells

  • Kim, Young-Hoon;Kim, Sae-Hun;Whang, Kwang-Youn;Kim, Young-Jun;Oh, Se-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1278-1285
    • /
    • 2008
  • The intestinal epithelial cell (IEC) layer of the intestinal tract makes direct contact with a number of microbiota communities, including bacteria known to have deleterious health effects. IECs possess innate protective strategies against pathogenic challenge, which primarily involve the formation of a physicochemical barrier. Intestinal tract mucins are principal components of the mucus layer on epithelial surfaces, and perform a protective function against microbial damage. However, little is currently known regarding the interactions between probiotics/pathogens and epithelial cell mucins. The principal objective of this study was to determine the effects of Lactobacillus on the upregulation of MUC2 mucin and the subsequent inhibition of E. coli O157:H7 attachment to epithelial cells. In the current study, the attachment of E. coli O157:H7 to HT-29 intestinal epithelial cells was inhibited significantly by L. acidophilus A4 and its cell extracts. It is also important to note that the expression of MUC2 mucin was increased as the result of the addition of L. acidophilus A4 cell extracts (10.0 mg/ml), which also induced a significant reduction in the degree to which E. coli O157:H7 attached to epithelial cells. In addition, the mRNA levels of IL-8, IL-1$\beta$, and TNF-$\alpha$ in HT-29 cells were significantly induced by treatment with L. acidophilus A4 extracts. These results indicate that MUC2 mucin and cytokines are important regulatory factors in the immune systems of the gut, and that selected lactobacilli may be able to induce the upregulation of MUC2 mucin and specific cytokines, thereby inhibiting the attachment of E. coli O157:H7.

Intestinal T cell lymphoma in a cat, Korea (고양이 장에서 발생한 T 세포 림프종)

  • Jeong, Jiyeon;Lee, Kyunghyun;Choi, Eun-Jin;Kim, Ji-Hyeon;So, ByungJae;Lee, Seunghee;Shin, Hyunho;Jung, Ji-Youl
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.1
    • /
    • pp.41-45
    • /
    • 2018
  • An 11 year-old male Korean short-haired cat was presented to local animal hospital due to weight loss, vomiting, and intestinal hypomotility. After the cat was euthanized by poor clinical outcomes, necropsy was performed at Animal and Plant Quarantine Agency. At necropsy, the stomach was enlarged and had some nearly complete pellet food and the yellow mucous contents. The lumen of the middle and lower parts of the jejunum became narrow. Histopathologically, medium-sized lymphoid cells with hyperchromatic nuclei enclosed by scant cytoplasm were diffusely proliferated from mucosa to serosa of the small intestine. These findings were mainly observed in the jejunum and slightly in the duodenum and ileum. The monomorphous lymphocytes were 1 to 1.5 times larger than red blood cells and had few mitotic figures. Metastasis of the tumor cells to other organs was not observed. In the result of immunohistochemical analysis for identifying the origin of tumor cells, CD3 was expressed, but $CD79{\alpha}$ was not detected in the infiltrated cells. This case was diagnosed as T cell intestinal lymphoma in a Korean short-haired cat based on the clinical signs, gross findings, histopathology, and immunohistochemistry.

Papiliocin, an antimicrobial peptide, rescues hyperoxia-induced intestinal injury

  • Kim, Seong Ryul;Park, Seung-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.43 no.2
    • /
    • pp.94-98
    • /
    • 2021
  • Reactive oxygen species (ROS) induce a variety of cellular responses, such as proliferation, differentiation, senescence, and apoptosis. Intestinal epithelial cells are continuously exposed to ROS, and excessive generation of ROS severely damages cells via oxidative stress. Pro-inflammatory cytokines may lead to intestinal inflammation and damage by inducing excessive ROS generation. In this study, we showed that papiliocin, an antimicrobial peptide, significantly inhibited ROS production, without affecting cell viability. Moreover, TNF-α and IL-6 expression was decreased in the intestinal epithelial cells. The activity of papiliocin may significantly contribute to preserving the integrity of the intestinal mucosa against oxidative damage and inflammation-related disorders.

Probiotics Inhibit Lipopolysaccharide-Induced Interleukin-8 Secretion from Intestinal Epithelial Cells

  • Oh, Hyun-Wook;Jeun, Gi-Hoon;Lee, Jin;Chun, Tae-Hoon;Kim, Sae-Hun
    • Food Science of Animal Resources
    • /
    • v.32 no.4
    • /
    • pp.434-440
    • /
    • 2012
  • It has been suggested that probiotics could be useful for the prevention of symptomatic relapse in patients with inflammatory bowel disease (IBD). Interleukin (IL)-8 has been well recognized as one of the pro-inflammatory cytokines that could trigger inflammation and epithelial barrier dysfunction. In this study, the anti-inflammatory effects of probiotics were investigated using a human epithelial cell line (HT-29). Probiotics from infant feces and kimchi were tested for their cytotoxicity and effects on adhesion to epithelial cells. The present results show that seven strains could form 70 % adhesion on HT-29. The probiotics used in this study did not affect HT-29 cell viability. To screen anti-inflammatory lactic acid bacteria, HT-29 cells were pretreated with live and heat-killed probiotics, and lipopolysaccharide (LPS) ($1{\mu}g/mL$) was then added to stimulate the cells. The cell culture supernatant was then used to measure IL-8 secretion by ELISA, and the cell pellet was used to determine IL-8 and toll-like receptor (TLR-4) mRNA expression levels by RT-PCR. Some probiotics (KJP421, KDK411, SRK414, E4191, KY21, and KY210) exhibited anti-inflammatory effects through the repression of IL-8 secretion from HT-29 cells. In particular, Lactobacillus salivarius E4191, originating from Egyptian infant feces, not only decreased IL-8 mRNA expression, but also decreased TLR-4 expression. These results indicate that Lactobacillus salivarius E4191 may have a protective effect in intestinal epithelial cells.

Effects of Alisma canaliculatum Extract in Pacemaker Potential of Intestinal Interstitial cells of Cajal in mice (생쥐 소장 및 대장 카할세포의 자발적 탈분극에서 택사의 효과에 관한 비교연구)

  • Kwon, Hyo Eun;Park, Dong Suk;Kim, Jeong Nam;Kim, Byung Joo
    • Herbal Formula Science
    • /
    • v.30 no.2
    • /
    • pp.37-44
    • /
    • 2022
  • Objectives : The purpose of this study was to examine the effects of Alisma canaliculatum Extract (ACE) on pacemaker potentials of small and large intestinal interstitial Cells of Cajal (ICC) in mice. Methods : We used enzymatic digestions to dissociate the ICC in the small and large intestine in mice. The whole-cell patch-clamp method was used to record pacemaker potentials in ICC. Results : 1. The ICC generated the pacemaker potentials in small intestine in mice. ACE (0.1-1mg/ml) induced membrane depolarization and decreased frequency with concentration-dependent manners. 2. Pretreatment with a Ca2+ free solution, Na+ 5 mM solution or 2-APB, a nonselective cation channel blocker, stopped the small intestinal ICC pacemaker potentials. In the case of Ca2+-free solution, Na+ 5 mM solution or 2-APB, ACE had no effects on the membrane depolarizations in small intestinal ICC. 3. The ICC generated the pacemaker potentials in large intestine in mice. Membrane depolarization appears regularly in the small intestine, but irregularly in the large intestine. ACE induced membrane depolarization (0.1-1mg/ml) and increased frequency (0.1-0.5mg/ml). 4. Pretreatment with a Ca2+ free solution, Na+ 5 mM solution or 2-APB, stopped the large intestinal ICC pacemaker potentials. In the case of Ca2+-free solution, Na+ 5 mM solution or 2-APB, ACE depolarized the membrane depolarizations in large intestinal ICC. 5. In mice, intestinal transit rate (ITR) values were dose-dependently decreased by the intragastric administration of ACE. Conclusions : These results suggest that ACE can regulate the pacemaker activity of ICC and the reaction by ACE is different from the small and large intestinal ICC, and the control of the intestinal motion by ACE may be caused by many complex processes.

Curcumin utilizes the anti-inflammatory response pathway to protect the intestine against bacterial invasion

  • Cho, Jin Ah;Park, Eunmi
    • Nutrition Research and Practice
    • /
    • v.9 no.2
    • /
    • pp.117-122
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Curcumin, a major component of the Curcuma species, contains antioxidant and anti-inflammatory properties. Although it was found to induce apoptosis in cancer cells, the functional role of curcumin as well as its molecular mechanism in anti-inflammatory response, particularly in intestinal cells, has been less investigated. The intestine epithelial barrier is the first barrier and the most important location for the substrate coming from the lumen of the gut. SUBJECTS/METHODS: We administered curcumin treatment in the human intestinal epithelial cell lines, T84 and Caco-2. We examined endoplasmic reticulum (ER) stress response by thapsigargin, qPCR of XBP1 and BiP, electrophysiology by wild-type cholera toxin in the cells. RESULTS: In this study, we showed that curcumin treatment reduces ER stress and thereby decreases inflammatory response in human intestinal epithelial cells. In addition, curcumin confers protection without damaging the membrane tight junction or actin skeleton change in intestine epithelial cells. Therefore, curcumin treatment protects the gut from bacterial invasion via reduction of ER stress and anti-inflammatory response in intestinal epithelial cells. CONCLUSIONS: Taken together, our data demonstrate the important role of curcumin in protecting the intestine by modulating ER stress and inflammatory response post intoxication.

In vitro and In vivo Effects of Gelidium amansii on Intestinal Immune System

  • Jun, Woo-Jin;Kim, Se-Han;Lee, Dae-Hee;Chun, Jin-Woong;Sim, Sang-In;Lee, Kwang-Won;Cho, Hong-Yon;Hong, Bum-Shik
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.147-151
    • /
    • 2005
  • Purified compound with intestinal immune system-modulating properties, GWE-2c, was isolated from methanol extract of Gelidium amansii by sequential procedures with silica gel column, LH-20 Sephadex gel column, and thin-layer chromatographies. In the presence of GWE-2c, strong immunoactivity in Peyers patch cell-mediated bone marrow cells was observed in vitro. In vivo intestinal immune-modulating activity was also enhanced by crude phenolic compound (GWE) of G. amansii in a dose-dependent manner. Investigation of production of several cytokines in Peyer's patch cells upon stimulation with GWE in vivo revealed the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-6 increased. Results suggest that the phenolic compound from G. amansii represents immunopotentiator and biological response modifier at in vitro and in vivo levels.